内容发布更新时间 : 2025/4/4 19:59:25星期一 下面是文章的全部内容请认真阅读。
15.已知圆(x+1)2+y2=4与抛物线y2=mx(m≠0)的准线交于A、B两点,且则m的值为 8 .
【考点】抛物线的简单性质.
【分析】抛物线y2=mx(m≠0)的准线为:x=﹣,圆心到准线的距离d=
=2
,解出即可得出.
,
,可得
【解答】解:抛物线y2=mx(m≠0)的准线为:x=﹣, 圆心(﹣1,0)到准线的距离d=∴
=2
,化为:
,
=1,m≠0,解得m=8.
故答案为:8. 16. 已知△ABC为等边三角形,点M在△ABC外,且MB=2MC=2,则MA的最大值是 3 .【考点】两点间距离公式的应用.
【分析】以BM为边作等边三角形BMK,推导出A在以K为圆心,以1为半径的圆上,由此能求出MA的最大值.
【解答】解:以BM为边作等边三角形BMK, 则BM=BK=MK=2, ∵∠BMK=∠ABC=60°, ∴∠ABK=∠MBC,
又AB=BC,BK=BK,∴△ABK∽△CBM,
∴AK=MC=1,∴A在以K为圆心,以1为半径的圆上, ∴|MK|﹣1≤|AM|≤|MK|+1, ∴1≤|AM|≤3.
∴MA的最大值是3. 故答案为:3.
三、解答题(解答应写出文字说明、证明过程或演算步骤) 17.已知数列{an}满足a1=,且an+1=3an﹣1,bn=an﹣. (1)求证:数列{bn}是等比数列. (2)若不等式
≤m对?n∈N*恒成立,求实数m的取值范围.
【考点】数列与不等式的综合;等比关系的确定.
【分析】(1)由题意可得an+1﹣=3(an﹣),即为bn+1=3bn,由等比数列的定义即可得证;(2)运用等比数列的通项公式,可得bn=3n﹣1,由题意可得m≥
的最大值,求得f
(n)==+,为递减数列,可得最大值,进而得到m的范围.
【解答】解:(1)证明:an+1=3an﹣1, 可得an+1﹣=3(an﹣), 即为bn+1=3bn,
则数列{bn}是首项为a1﹣=1,3为公比的等比数列; (2)由(1)可得bn=3n﹣1, 不等式
≤m对?n∈N*恒成立,即有
m≥的最大值,
由f(n)==+,
由3n递增,可得f(n)递减, 即有f(1)取得最大值1,
则m≥1,即有m的范围是[1,+∞). 18.某游戏网站为了了解某款游戏玩家的年龄情况,现随机调查100位玩家的年龄整理后画出频率分布直方图如图所示.
(1)求100名玩家中各年龄组的人数,并利用所给的频率分布直方图估计该款游戏所有玩家的平均年龄;
(2)若已从年龄在[35,45),[45,55)的玩家中利用分层抽样选取6人组成一个游戏联盟,现从这6人中选出2人,求这两人在不同年龄组的概率.
【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图. 【分析】(Ⅰ)由直方图可得各组年龄的人数,由直方图计算平均值的方法可得平均年龄; (Ⅱ)在[35,45)的人数为4人,记为a,b,c,d;在[45,55)的人数为2人,记为m,n.列举可得总的情况共有15种,“这两人在不同年龄组”包含8种,由古典概型概率公式可得.
【解答】解:(Ⅰ)由直方图可得各组年龄的人数分别为10,30,40,20人; 估计所有玩家的平均年龄为0.1×20+0.3×30+0.4×40+0.2×50=37岁;
(Ⅱ)在[35,45)的人数为4人,记为a,b,c,d;在[45,55)的人数为2人,记为m,n.
∴抽取结果共有15种,列举如下: (ab),(ac)