2001—2016年江苏专转本高等数学真题(附答案)[1]

内容发布更新时间 : 2025/6/22 22:38:32星期一 下面是文章的全部内容请认真阅读。

2001年江苏省普通高校“专转本”统一考试

高等数学

一、选择题(本大题共5小题,每小题3分,共15分)

1、下列各极限正确的是 ( )

1xA、lim(1?)?e

x?0x2、不定积分

1B、lim(1?)x?e

x??x1C、limxsinx??11?1 D、limxsin?1

x?0xx?

11?x2 dx? ( )

A、

11?x2B、

11?x2?c C、arcsinx D、arcsinx?c

3、若f(x)?f(?x),且在?0,???内f'(x)?0、f''(x)?0,则在(??,0)内必有 ( ) A、f'(x)?0,f''(x)?0 C、f'(x)?0,f''(x)?0 4、

B、f'(x)?0,f''(x)?0 D、f'(x)?0,f''(x)?0

?20 x?1dx? ( )

B、2

22A、0 C、-1 D、1

5、方程x?y?4x在空间直角坐标系中表示 ( ) A、圆柱面

B、点

C、圆

D、旋转抛物面

二、填空题(本大题共5小题,每小题3分,共15分)

?x?tetdy6、设?,则2dx?y?2t?t'''t?0?

7、y?6y?13y?0的通解为 8、交换积分次序

?dx?022xxf(x,y)dy? y9、函数z?x的全微分dz? 1

10、设f(x)为连续函数,则

?1?1[f(x)?f(?x)?x]x3dx?

三、计算题(本大题共10小题,每小题4分,共40分) 11、已知y?arctanxx?ln(1?2x)?cos2?5,求dy.

12、计算limx?0x??etdt0x2sinx.

13、求f(x)?(x?1)sinx的间断点,并说明其类型. 2x(x?1)lnydy,求xdxx?1,y?114、已知y?x?2.

e2xdx. 15、计算?1?exk1dx?,求k的值. ???1?x22016、已知

17、求y'?ytanx?secx满足y18、计算

x?0?0的特解

2sinydxdy,D是x?1、y?2、y?x?1围成的区域. ??D19、已知y?f(x)过坐标原点,并且在原点处的切线平行于直线2x?y?3?0,若

f'(x)?3ax2?b,且f(x)在x?1处取得极值,试确定a、b的值,并求出y?f(x)的表达式.

?zx?2z20、设z?f(x,),其中f具有二阶连续偏导数,求、.

?x?x?yy2四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过P(1,0)作抛物线y? (1)切线方程; (2)由y?x?2的切线,求

x?2,切线及x轴围成的平面图形面积;

(3)该平面图形分别绕x轴、y轴旋转一周的体积。

2

<
>>展开全文<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi