内容发布更新时间 : 2024/11/9 10:35:13星期一 下面是文章的全部内容请认真阅读。
至10ppm以下,进入104-F进行气液分离。
3 冷凝液回收系统
自低变104-D来的工艺气(260℃)经102-F底部冷凝液萃冷后,再经105-C,106-C换热至60℃,进入102-F,其中工艺气中所带的水分沉积下来,脱水后的工艺气进入CO2吸收塔101-E脱除CO2。102-F的水一部分进入103-F,一部分经换热器C66401换热后进入E66401,由管网来的327℃的蒸汽进入E66401的底部,塔顶产生的气体进入蒸汽系统,底部液体经C66401,C66402换热后排出。
(3) 合成氨装置合成工段
氨的合成是整个合成氨流程中的核心部分。前工序制得的合格氮氢气在高温高压及铁催化剂作用下合成为氨。由于在反应过程中只有少部分氮氢气合成为氨,因此反应后的气体混合物分离氨后,经加压又送回合成塔,构成合成回路。氨合成的化学反应式如下:
1/2 N2 + 3/2H2 = NH3 + 热量
这是一个放热和体积减少的可逆反应。
本装置的合成塔采用了三段间接换热式径向合成塔,这样合成塔触媒层的温度分布就更为合理,更加接近最佳温度分布曲线,触媒层的阻力降也更小。同时,在合成塔出口设置了合成废锅,利用合成氨余热产生125×105Pa(绝)的高压蒸汽,能量回收更为充分。但是,由于转化工序加入过量空气,使合成系统氮过剩,加大了合成排放气量。为此增加了氢回收装置加以弥补,回收的氢返回合成系统。
1 合成系统
从甲烷化来的新鲜气(40℃、2.6Mpa、H2/N2=3:1)先经压缩前分离罐(104-F),分离气体中的水后,进合成气压缩机(103-J)低压段,在压缩机的低压缸将新鲜气体压缩到合成所需要的最终压力的二分之一左右,出低压段的新鲜气先经热交换器(106-C,(现场图中错标为136-C)与甲烷化进料气换热)冷却至93.3℃,再经水冷器(116-C)冷却至38℃,最后经氨冷器(129-C)冷却至7℃后与氢回收来的氢气混合进入中间分离罐(105-F),进一步分离气体中的水后,从中间分离罐出来的氢氮气再进合成气压缩机高压段。
合成回路来的循环气与经高压段压缩后的氢氮气混合进压缩机循环段,从循环段出来的合成气进合成系统水冷器(124-C)。高压合成气自水冷却器124-C出来后,分两路继续冷却,第一路串联通过原料气和循环气一级和二级氨冷器117-C和118-C的管侧,冷却介质都是冷冻用液氨,另一路通过就地的MIC-23节流后,在合成塔进气和循环气换热器120-C的壳侧冷却,两路会合后,又在新鲜气和循环气三级氨冷器119-C中用三级液氨闪蒸槽112-F来的冷冻用液氨进行冷却,冷却至-23.3℃。冷却后的气体经过水平分布管进入高压氨分离器(106-F),在前几个氨冷器中冷凝下来的循环气中的氨就在106-F中分出,分离出来的产品液氨送往低压氨分离器(107-F)。从高压氨分离器出来后,循环气就进入合成塔进气—新鲜循环气换热器120-C的管侧,从壳侧的工艺气体中取得热量,然后又进入合成塔进气--出气换热器(121-C)的管侧,再由HCV-11控制进入合成塔(105-D),在121-C管侧的出口处分析气体成分。
13
SP-35是一专门的双向降爆板装置,是用来保护121-C的换热器,防止换热器的一侧卸压导致压差过大而引起破坏。
主线合成气进气由HCV-11控制,从冷激式合成塔105-D的塔底进入,自下而上地沿内件与外筒之间的环隙上升,被预热至合成塔顶部。再向下依次经过各触媒层进行反应;一路副线合成气进气(冷激气)经由MIC-13控制,直接到第一层触媒的入口,用以控制该处的温度(开工时仅由这一路进气),另一路副线冷激气可以分别用MIC-14、MIC-15和MIC-16进行调节,分别控制第二、第三、第四层触媒的入口温度。气体经过最底下一层触媒床后,又自下而上地把气体导入中心内部换热器的管侧,把热量传给进来的气体,再由105-D的顶部出口引出。
合成塔出口气进入合成塔--锅炉给水换热器123-C的管侧,把热量传给锅炉给水,接着又在121-C的壳侧与进塔气换热而进一步被冷却,最后回到103-J高压缸循环段(最后一个叶轮)而完成了整个合成回路。
合成塔出来的一部分气体(吹出气,又叫驰放气),经氨冷器125-C至高压吹出气分离缸108-F,经MIC-18调节并用FI-63指示流量后,送往氢回收装置或送往一段转化炉燃料气系统。从合成回路中排出一部分气是为了控制循环气中的甲烷和氩的浓度,甲烷和氩在系统中积累多了会使氨的合成率降低。吹出气在进入分离罐108-F以前先在氨冷器125-C中冷却,由108-F分出的液氨送低压氨分离器107-F回收。
合成塔备有一台开工加热炉(102-B),它是用于开工时把合成塔引温至反应温度,开工加热炉的原料气流量由FI-62指示,另外,它还设有一低流量报警器FAL-85与FI-62配合使用,MIC-17调节102-B燃料气量。
2 冷冻系统
合成来的液氨进入中间闪蒸槽(107-F,即低压氨分离器),闪蒸出的不凝性气体通过PICA-8排出,作为燃料气送一段炉燃烧。分离器107-F装有液面指示器LI-12。液氨减压后由液位调节器LICA-12调节进入三级闪蒸罐(112-F),进一步闪蒸,闪蒸后作为冷冻用的液氨进入系统中。冷冻的一、二、三级闪蒸罐操作压力分别为:0.4MPa(G)、0.16MPa(G)、0.0028MPa(G)。三台闪蒸罐与合成系统中的第一、第二、第三氨冷器相对应,它们是按热虹吸原理进行冷冻蒸发循环操作的。液氨由各闪蒸罐流入对应的氨冷器,吸热后的液氨蒸发形成的气液混合物又回到各闪蒸罐进行气液分离,气氨分别进氨压缩机(105-J)各段气缸,液氨分别进各氨冷器。
由液氨接收槽(109-F)来的液氨逐级减压后补入到各闪蒸罐。一级闪蒸罐(110-F)出来的液氨除送第一氨冷器(117-C)外,另一部分作为合成气压缩机(103-J)一段出口的氨冷器(129-C)和液氨接收槽(109-F)的氨冷器(126-C)的冷源(126-C冷却管道图中省略)。氨冷器(129-C)和(126-C)蒸发的气氨进入二级闪蒸罐(111-F),110-F多余的液氨也送往111-F。111-F的液氨除送第二氨冷器(118-C)和弛放气氨冷器(125-C)作为冷冻剂外,其余部分送往三级闪蒸罐(112-F)。112-F的液氨除送119-C作为冷冻剂外,还可以由冷氨产品泵(109-J)作为冷氨产品送液氨贮槽贮存。
由三级闪蒸罐(112-F)出来的气氨进入氨压缩机(105-J)一段压缩,一段出口与二级闪蒸罐111-F来的气氨汇合进入二段压缩,二段出口气氨先经压缩机中间冷却器(128-C)冷却后,与一级闪蒸罐110-F来的气氨汇合进入三段压缩,三段出口的气氨经氨冷凝器(127-CA、CB),冷凝的液氨进入接收槽(109-F)。109-F中的
14
闪蒸气去闪蒸罐氨冷器(126-C),冷凝分离出来的液氨流回109-F,不凝气作燃料气送一段炉燃烧。109-F中的液氨一部分减压后送至一级闪蒸罐(110-F),另一部分作为热氨产品经热氨产品泵(1-3P-1,2)送往尿素装置。
图3 合成氨工段现场图
图4 合成氨塔DCS图
15
图5 冷冻工段现场图
16
3 合成工段操作评分步骤
表一 合成系统开车操作评分步骤
步骤 普通 普通 普通 普通 普通 ID S0 S1 S2 S3 S4 步骤描述 投用LSH109(104-F液位高联锁) 投用LSH111(105-F液位高联锁) 显示合成塔压力的仪表换为低量程表 全开阀VX0015进冷却水,投用124-C 全开阀VX0016进冷却水,投用123-C 备注 辅助控制盘 辅助控制盘 合成现场图 补充:全开阀VX0014进冷却水,投用116-C 打开阀VV077,以投用防爆阀SP35 打开阀VV078,以投用防爆阀SP35 打开新鲜气阀SP71,把氢氮气引入104-F 补充:开阀VV060进氢回收中的富氢气 按103-J复位按钮,然后启动103-J 辅助控制盘及合成现场图 开液氨泵117-J,注液氨 冷冻系统图的现场画面 开MIC23,把工艺气引入合成塔105-D,合 成塔充压 开HCV11,把工艺气引入合成塔105-D,合 成塔充压 开合成气阀SP1付线阀VX0036均压 逐渐关小防喘振阀FIC7 逐渐关小防喘振阀FIC8 逐渐关小防喘振阀FIC14 开放空阀SP72 合成现场图 开SP72前旋塞阀VX0035,准备排气 当合成塔压力达到1.4Mpa时换高量程压 力表 开新鲜气阀SP1,排气 关SP1付线阀VX0036 关放空阀SP72 关SP72前旋塞阀VX0035,排气结束 关进气阀HCV11,准备开工 全开驰放气PIC194前阀MIC18 开PIC-194设定在10.5MPa,投自动(108-F 出口调节阀) 开入102-B旋塞阀VV048 开循环气阀SP70,准备循环气 普通 S5 普通 S6 普通 S7 普通 S8 普通 S9 普通 S10 普通 S11 普通 普通 普通 普通 普通 普通 普通 普通 普通 普通 普通 普通 普通 普通 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 普通 S26 普通 S27 17