内容发布更新时间 : 2024/11/19 14:53:17星期一 下面是文章的全部内容请认真阅读。
1110∴异面直线NE与BM所成角的余弦值为40.
?y?x?1?22x?2pyyx?20.(1)解:由,消去得?2px?2p?0.
(x,y)(x,y)设P,Q的坐标分别为11,22,
则∴∴
x1?x2?2p,x1x2??2p.
PQ?1?12?(2p)2?4(?2p)?26,∵p?0,∴p?1.
OP?OQ?x1x2?y1y2?x1x2?(x1?1)(x2?1)?2x1x2?x1?x2?1??4?2?1??1.
2??y?2px?2?x?2py,得x?y?2p或x?y?0,则M(2p,2p).
(2)证明:由?222y?2p?k(x?2p)x?2pkx?4p(1?k1)?0. x?2py11AM设直线:,与联立得2222??4pk?16p(1?k)?0(k?2)?0,∴k1?2. 1111由,得
222y?2p?k(x?2p)ky?2py?4p(1?k2)?0. y?2px2设直线BM:,与联立得2由
?2?4p?16pk2(1?k2)?0,得(1?2k2)?0,∴
222k2?12.
故直线AM:y?2p?2(x?2p),直线BM:从而不难求得A(p,0),B(?2p,0),C(0,p),
y?2p?1(x?2p)2,
p21?2222S?pS?3p2(为定值). ?BOC?ABM∴,,∴?BOC的面积与四边形AOCM的面积之比为3p?p21.(1)解:f(x)?g(x).
证明如下:
xx2h(x)?f(x)?g(x)h'(x)?3e?2x?9为增函数, 3e?x?9x?1设,∵
∴可设当
h'(x0)?0,∵h'(0)??6?0,h'(1)?3e?7?0,∴x0?(0,1).
x?x0时,h'(x)?0;当x?x0时,h'(x)?0.
x02h(x)?h(x)?3e?x?9x0?1, min00∴
x0x03e?2x?9?03e??2x0?9, 0又,∴
22h(x)??2x?9?x?9x?1?xmin0000?11x0?10?(x0?1)(x0?10). ∴
∵∴
x0?(0,1),∴(x0?1)(x0?10)?0, h(x)min?0,f(x)?g(x).
6
(2)证明:设?(x)?xe?4x?5?f(x)?(x?3)e?x?4x?5(x?0),
x?'(x)?(x?2)(e?2)?0,得x1?ln2,x2?2, 令
则?(x)在(0,ln2)上单调递增,在(ln2,2)上单调递减,在(2,??)上单调递增.
xx2?(2)?9?e2?2,设?(t)?2(ln2?t?2),
m2(m?3)e?m?3m?5?0(0?m?2), ∵
m2(m?3)e?m?4m?5?m(0?m?2),即?(m)?m(0?m?2). ∴
x?(x)??(0)?2?axe?4x?5?f(x)?a. 0?a?t当时,,则
x?(x)??(a)xe?4x?5?f(x)?a,∴?(a)?a,∴t?a?m. t?a?mmin当时,,∵
当m?a?2或a?2时,不合题意. 从而0?a?m.
yy?t3?x,即y?3(x?2), 22.解:(1)∵x,∴
233??0x又t?0,∴,∴x?2或x?0,
∴曲线M的普通方程为y?3(x?2)(x?2或x?0).
22222??4cos???4?cos?x?y?4xx?4x?y?0. C∵,∴,∴,即曲线的直角坐标方程为
x?23??y?3(x?2)?2x?4x?y2?0x2?4x?3?0??(2)由得,
∴
x1?1(舍去)x?3,
,2(23,)(3,3)6. 则交点的直角坐标为,极坐标为
?x?1?1?x?4?x?4???2?2x?22x?8?2, 0?2f(x)?223.解:(1)由,得?或?或?解得0?x?5,故不等式f(x)?2的解集为[0,5].
?(2)
?2?2x,x?1???0,1?x?4f(x)?x?4?x?1?3??2x?8,x?4,
作出函数f(x)的图象,如图所示,
7
直线y?kx?2过定点C(0,?2),
12; 当此直线经过点B(4,0)时,
当此直线与直线AD平行时,k??2.
1k?(??,?2)[,??)2故由图可知,.
k?
8