2019-2020学年高中数学 课时跟踪检测(十三)演绎推理(含解析)新人教A版选修2-2

内容发布更新时间 : 2025/2/28 17:11:45星期一 下面是文章的全部内容请认真阅读。

课时跟踪检测(十三) 演绎推理

一、题组对点训练

对点练一 用三段论表示演绎推理

1.《论语》云:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以名不正,则民无所措手足.”上述理由用的是( )

A.合情推理 C.类比推理

B.归纳推理 D.演绎推理

解析:选D 由演绎推理定义知该推理为演绎推理,故选D.

2.“因为四边形ABCD是矩形,所以四边形ABCD的对角线相等”,补充以上推理的大前提是( )

A.正方形都是对角线相等的四边形 B.矩形都是对角线相等的四边形 C.等腰梯形都是对角线相等的四边形 D.矩形都是对边平行且相等的四边形 答案:B

3.下面几种推理中是演绎推理的是( )

A.因为y=2是指数函数,所以函数y=2经过定点(0,1)

1111*B.猜想数列,,,…的通项公式为an=(n∈N)

1×22×33×4n?n+1?

C.由“平面内垂直于同一直线的两直线平行”类比推出“空间中垂直于同一平面的两平面平行”

D.由平面直角坐标系中圆的方程为(x-a)+(y-b)=r,推测空间直角坐标系中球的方程为(x-a)+(y-b)+(z-c)=r

解析:选A A是演绎推理,B是归纳推理,C,D是类比推理. 对点练二 用三段论证明几何问题

4.有一段演绎推理是这样的:“若一直线平行于平面,则该直线平行于平面内所有直线;已知直线b?平面α,直线a?平面α,直线b∥平面α,则直线b∥直线a”的结论显然是错误的,这是因为( )

A.大前提错误 C.推理形式错误

B.小前提错误 D.非以上错误

2

2

2

2

2

2

2

xx解析:选A “直线与平面平行”,不能得出“直线平行于平面内的所有直线”,即大前提错误.

5.如图,在平行四边形ABCD中,∠DAB=60°,AB=2,AD=4.

将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD.

求证:AB⊥DE. 证明:在△ABD中,

∵AB=2,AD=4,∠DAB=60°,

∴BD=AB+AD-2AB·ADcos∠DAB=23. ∴AB+BD=AD.∴AB⊥BD. 又平面EBD⊥平面ABD,

平面EBD∩平面ABD=BD,AB?平面ABD, ∴AB⊥平面EBD.

∵DE?平面EBD,∴AB⊥DE.

6.如图所示,三棱锥A-BCD的三条侧棱AB,AC,AD两两互相垂直,O为点A在底面BCD上的射影.求证:O为△BCD的垂心.

证明:如图,连接BO,CO,DO.

∵AB⊥AD,AC⊥AD,AB∩AC=A,∴AD⊥平面ABC. 又BC?平面ABC,∴AD⊥BC. ∵AO⊥平面BCD,∴AO⊥BC, 又AD∩AO=A, ∴BC⊥平面AOD,

∴BC⊥DO,同理可证CD⊥BO, ∴O为△BCD的垂心.

对点练三 用三段论证明代数问题

7.用三段论证明命题:“任何实数的平方大于0,因为a是实数,所以a>0”,你认为这个推理( )

A.大前提错误 C.推理形式错误

B.小前提错误 D.是正确的

2

2

2

2

2

2

解析:选A 这个三段论推理的大前提是“任何实数的平方大于0”,小前提是“a是实数”,结论是“a>0”.显然结论错误,原因是大前提错误.

8.已知推理:“因为△ABC的三边长依次为3,4,5,所以△ABC是直角三角形”.若将

>>灞曞紑鍏ㄦ枃<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi