matlab报告 - 用matlab研究抛体运动

内容发布更新时间 : 2025/6/24 15:54:43星期一 下面是文章的全部内容请认真阅读。

y2=v2^2*sin(2*x)/g; %初速度为15下的射程 y3=v3^2*sin(2*x)/g; %初速度为20下的射程 y4=v4^2*sin(2*x)/g; %初速度为25下的射程 subplot(2,2,1); %选择2*2个区的一号区

plot(x,y1); %输出初速度为10下的射程曲线 title('v0=10'); %加图形标题

text(pi/4,10,'射程为10'); %在最大射程处加图形说明 subplot(2,2,2); %选择2*2个区的二号区

plot(x,y2); %输出初速度为15下的射程曲线 title('v0=15'); %加图形标题

text(pi/4,22.5,'射程为22.5'); %在最大射程处加图形说明 subplot(2,2,3); %选择2*2个区的三号区

plot(x,y3); %输出初速度为20下的射程曲线 title('v0=20'); %加图形标题

text(pi/4,40,'射程为40'); %在最大射程处加图形说明 subplot(2,2,4); %选择2*2个区的四号区

plot(x,y4); %输出初速度为25下的射程曲线 title('v0=25'); %加图形标题

text(pi/4,62.5,'射程为62.5'); %在最大射程处加图形说明 %程序2(抛射角与飞行路径及其一阶导数曲线) x=(0:pi/100:pi/2); %产生行向量x

y1=(sin(x)+(cos(x).*cos(x)).*log(1+sin(x))./cos(x))*100/9.8; %飞行路径长度与抛射角之间的函数关系 y2=cos(x).*(1-sin(x).*log((1+sin(x))./cos(x)))*200/9.8;

%飞行路径对抛射角的一阶导数的函数关系

m=(sin(pi/6)+(cos(pi/6)*cos(pi/6))*log(1+sin(pi/6))/cos(pi/6))*100/9.8; %抛射角取某一特定值时飞行路径值

n=cos(pi/3)*(1-sin(pi/3)*log((1+sin(pi/3))/cos(pi/3)))*200/9.8; %抛射角取某一特定值时飞行路径一阶导的值 plot(x,y1,'b:'); %输出飞行路径长度与抛射角之间的函数表达式 hold on; %设置图形保持状态

plot(x,y2,'k'); % 输出飞行路径对抛射角的一阶导数的函数表达系 hold off; %关闭图形保持

text(pi/6,m,'y1'); %在指定位置添加图例说明 text(pi/3,n,'y2'); %在指定位置添加图列说明 grid; %网格线控制 %程序3(平抛速度随时间的变化关系)

t=0:0.01:10; %产生时间的行向量 Vt=-sqrt(10^2+9.8*t.^

>>展开全文<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi