内容发布更新时间 : 2024/12/23 12:32:58星期一 下面是文章的全部内容请认真阅读。
课时跟踪检测(十三) 数列求和
层级一 学业水平达标
1.已知an=(-1),数列{an}的前n项和为Sn,则S9与S10的值分别是( ) A.1,1 C.1,0
B.-1,-1 D.-1,0
n解析:选D S9=-1+1-1+1-1+1-1+1-1=-1,
S10=S9+a10=-1+1=0.
2.数列{an}的通项公式是an=A.11 C.120
解析:选C ∵an=
1
1
n+n+1
,若前n项和为10,则项数为( )
B.99 D.121
n+n+1
=n+1-n,
∴Sn=a1+a2+…+an
=(2-1)+(3-2)+…+(n+1-n) =n+1-1,
令n+1-1=10,得n=120.
12
3.等差数列{an}中,a1=1,an,an+1是方程x-(2n+1)x+=0的两个根,则数列{bn}
bn前n项和Sn=( )
A.C.
11
B. 2n+1n+1
nn D. 2n+1n+1
bn12
解析:选D 因为an,an+1是方程x-(2n+1)x+=0的两个根,所以an+an+1=2n+1,又因为数列{an}为等差数列,所以an+an+1=a1+a2n=1+a2n=2n+1,所以a2n=2n,所以an=
n.anan+1=n(n+1)=,所以bn==-,所以数列{bn}前n项和Sn=1-+-
bnn?n+1?nn+1223
111n+…+-=1-=.
nn+1n+1n+1
4.在数列{an}中,已知Sn=1-5+9-13+17-21+…+(-1)
n-1
1111111
(4n-3),则S15+S22-
S31的值( )
A.13 C.46
B.-76 D.76
解析:选B ∵S15=(-4)×7+(-1)(4×15-3)=29.
14
S22=(-4)×11=-44.
S31=(-4)×15+(-1)30(4×31-3)=61.
∴S15+S22-S31=29-44-61=-76.
5.数列1,1+2,1+2+2,…,1+2+2+…+2A.2-101 C.2-99
2
100100
99
2
2
n-1
,…的前99项和为( )
B.2-101 D.2-99
n-199
解析:选A 由数列可知an=1+2+2+…+2
2
99
2
1-2n==2-1,所以,前99项的和为1-2
99
n2?1-2?100
S99=(2-1)+(2-1)+…+(2-1)=2+2+…+2-99=-99=2-101.
1-2
99
6.已知等比数列{an}的公比q≠1,且a1=1,3a3=2a2+a4,则数列?________.
?
?的前4项和为?anan+1?
1?
解析:∵等比数列{an}中,a1=1,3a3=2a2+a4,∴3q=2q+q.又∵q≠1,∴q=2,∴an=2
n-1
23
,∴
?1?11?1?2n-1
?是首项为,公比为的等比数列, =??,即?
anan+1?2?24?anan+1?
1
1??1?4?
?1-????1?2??4??85
?的前4项和为∴数列?=.
1128?anan+1?
1-485
答案:
128
7.等比数列{an}的前n项和为Sn,若=3,则=________. 解析:=3,故q≠1,
S6S3S9S6
S6S3
a1?1-q6?1-q3∴×3=1+q=3,
1-qa1?1-q?
即q=2.
3S9a1?1-q9?1-q1-27所以=×==.
S61-qa1?1-q6?1-223
3
7答案: 3
8.对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,{an}的“差数列”的通项公式为2,则数列{an}的前n项和Sn=________.
解析:∵an+1-an=2,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
nn=2
n-1
+2
n-2
2-2nn+…+2+2+2=+2=2-2+2=2.
1-2
2
n2-2n+1
∴Sn==2-2.
1-2答案:2
n+1
n+1
-2
2
9.已知{an}是递增的等差数列,a1=2,a2=a4+8. (1)求数列{an}的通项公式;
(2)若bn=an+2an,求数列{bn}的前n项和Sn.
解:(1)设数列{an}的公差为d,d>0.由题意得(2+d)=2+3d+8,解得d=2. 故an=a1+(n-1)·d=2+(n-1)·2=2n. (2)∵bn=an+2an=2n+2, ∴Sn=b1+b2+…+bn
=(2+2)+(4+2)+…+(2n+2) =(2+4+…+2n)+(2+2+…+2) ?2+2n?·n4·?1-4?=+ 21-44
=n(n+1)+
n+1
n2
4
2n2
4
2n2n2
-4. 3
10.在等差数列{an}中,a3=4,a7=8. (1)求数列{an}的通项公式an; (2)令bn=
an2
n-1
,求数列{bn}的前n项和Tn.
解:(1)因为d=
a7-a3
7-3
=1,所以an=a3+(n-3)d=n+1.
ann+1
(2)bn=n-1=n-1,
22
34n+1
Tn=b1+b2+…+bn=2++2+…+n-1.①
22
2
123nn+1
Tn=+2+…+n-1+n,② 22222
1111n+1由①-②得Tn=2++2+…+n-1-n 222221?n+1?11
=?1++2+…+n-1?+1-n
2?2?221
1-n21?n+1?n+1=+1-n=2?1-n?+1-n
122?2?1-2