内容发布更新时间 : 2024/11/9 1:43:28星期一 下面是文章的全部内容请认真阅读。
二次函数中考题精选
1、(2009年枣庄市)如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.
y A B x O
2、(2009年株洲市)已知?ABC为直角三角形,?ACB?90?,AC?BC,点A、C在x轴上,点B坐标为(3,m)(m?0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.
(1)求点A的坐标(用m表示); (2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结 BQ并延长交AC于点F,试证明:FC(AC?EC)为定值.
E yB
Q
AODPFCx
3、(2009年重庆市江津区)某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。 (1)请建立销售价格y(元)与周次x之间的函数关系;
(2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系
1为z??(x?8)2?12, 1≤ x ≤11,且x为整数,那么该品牌童装在第几周售出后,每
8件获得利润最大?并求最大利润为多少?
4、(2009年重庆市江津区)抛物线y??x2?bx?c与x轴交与A(1,0),B(- 3,0)两点, (1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.