内容发布更新时间 : 2025/5/24 5:07:56星期一 下面是文章的全部内容请认真阅读。
(2)(?x)P(x)→(?x) Q(x) (3)((?x) P(x)∨(?y)Q(y))→(?x)R(x)
(4)(?x) (P(x)→Q(x,y))→((?y)R(y)→(?z)S(y,z)) 解:
(1)(?x) P(x)∧┐(?x)Q(x)
?(?x) P(x)∧┐(?y)Q(y) ?(?y)(?x) (P(x)∧┐Q(y)) (2)(?x)P(x)→(?x) Q(x)
?(?x)P(x)→(?y) Q(y)?(?x)(?y)(P(x)→Q(y)) (3)((?x) P(x)∨(?y)Q(y))→(?x)R(x) ?┐((?x)P(x)∨(?y)Q(y))∨(?x)R(x) ? (┐(?x) P(x)∧┐(?y)Q(y))∨(?x)R(x) ? ((?x)┐P(x)∧(?y)┐Q(y))∨(?x)R(x) ? (?x)(?y)(?z)(┐P(x)∧┐Q(y)∨R(z)) (4)(?x)(P(x)→Q(x,y))→((?y)R(y)→(?z)S(y,z)) ?┐(?x)(P(x)→Q(x,y))∨((?y)R(y)→(?z)S(y,z)) ? (?x)(P(x)∧┐Q(x,y))∨((?y) ┐R(y)∨(?z)S(y,z)) ? (?x)(?z)(?y)(P(x)∧┐Q(x,u)∨┐R(y)∨S(v,z)) 20. 证明下列各式。
(1)(?x)( ┐A(x)→B(x)),(?x) ┐B(x) ?(?x)A(x) (2)(?x)A(x)→(?x)B(x) ?(?x) (A(x)→B(x))
(3)(?x)(A(x)→B(x)),(?x)(C(x)→┐B(x))?(?x)(C(x)→┐A(x)) (4)(?x)(A(x)∨B(x)),(?x)(B(x)→┐C(x)),(?x)C(x)? (?x)A(x) 证明: (1)
(1) (?x) ┐B(x) P (2) ┐B(a) ES(1) (3) (?x)( ┐A(x)→B(x)) P (4) ┐A(a)→B(a) US(3) (5) A(a) T(2)(4) I (6) (?x)A(x) EG(5) (2)
(?x)A(x)→(?x)B(x) ?┐(?x)A(x)∨(?x)B(x)?(?x)┐A(x)∨(?x)B(x) ?(?x)(┐A(x)∨B(x))? (?x) (A(x)→B(x)) (3)
(1) (?x)(C(x)→┐B(x)) P (2) C(a)→┐B(a) US(1) (3) (?x)(A(x)→B(x)) P (4) A(a)→B(a) US(3) (5) ┐B(a)→┐A(a) T(4) E (6) C(a)→┐A(a) T(2)(5) I (7) (?x)(C(x)→┐A(x)) UG(6) (4)(?x)(A(x)∨B(x)),(?x)(B(x)→┐C(x)),(?x)C(x)? (?x)A(x) (1) (?x)C(x) P (2) C(a) US(1) (3) (?x)(B(x)→┐C(x)) P (4) B(a)→┐C(a) US(3)
(5) ┐B(a) T(2)(4) I (6) (?x)(A(x)∨B(x)) P (7) A(a)∨B(a) US(6) (8) A(a) T(5)(7) I (9) (?x)A(x) UG(8) 21. 用CP规则证明。
(1)(?x) (P(x)→Q(x))? (?x)P(x)→(?x)Q(x) (2)(?x) (P(x)∨Q(x))? (?x)P(x)∨(?x)Q(x) 证明:
(1)(?x) (P(x)→Q(x))? (?x)P(x)→(?x)Q(x) 证明:
(1) (?x)P(x) P(附加前提) (2) P(a)