内容发布更新时间 : 2024/11/10 4:13:10星期一 下面是文章的全部内容请认真阅读。
求电场强度的六种特殊方法
一、镜像法(对称法)
镜像法实际上就是根据某些物理现象、物理规律、物理过程或几何图形的对称性进行解题的一种方法,利用此法分析解决问题可以避免复杂的数学演算和推导,直接抓住问题的实质,有出奇制胜之效。
例1.(2005年上海卷4题)如图1,带电量为+q的点电荷与均匀带电薄板相距为2d,点电荷到带电薄板的垂线通过板的几何中心.若图中a点处的电场强度为零,根据对
称性,带电薄板在图中b点处产生的电场强度大小和方向如何?(静电力恒量为k)
二、微元法
微元法就是将研究对象分割成若干微小的的单元,或从研究对象上选取某一“微元”加以分析,从而可以化曲为直,使变量、难以确定的量转化为常量、容易确定的量。
例2.如图2所示,均匀带电圆环所带电荷量为Q,半径为R,圆心为O,P为垂直于圆环平面的称轴上的一点,OP=L,试求P点的场强。
三、等效替代法
“等效替代”方法,是指在效果相同的前提下,从A事实出发,用另外的B事实来代替,必要时再由B而C……直至实现所给问题的条件,从而建立与之相对应联系,得以用有关规律解之。如以模型代实物,以合力(合运动)替代数个分力(分运动);等效电阻、等效电源等。
例3. 如图3所示,一带正Q电量的点电荷A,与一块接地的长金属板MN组成一系统,点电荷A与板MN间的垂直距离为为d,试求A与板MN的连线中点C处的电场强度.
四、补偿法
求解物理问题,要根据问题给出的条件建立起物理模型。但有时由题给条件建立模型不是一个完整的模型,这时需要给原来的问题补充一些条件,组成一个完整的新模型。这样,求解原模型的问题就变为求解新模型与补充条件的差值问题。
例4. 如图5所示,用长为L的金属丝弯成半径为r的圆弧,但在A、B之间留有宽度为d的间隙,且d远远小于r,将电量为Q的正电荷均为分布于金属丝上,求圆心处的电场强度。
五、等分法
利用等分法找等势点,再连等势线,最后利用电场强度与电势的关系,求出电场强度。
例5. 如图6所示,a、b、c是匀强电场中的三点,这三点边线构成等边三角形,每边长L=21cm,将一带
?5?6电量q=?2?10C的点电荷从a点移到b点,电场力做功W1=?1.2?10J;若将同一点电荷从a点移到c点,?6电场力做功W2=6?10J,试求匀强电场强度E。
六、极值法
物理学中的极值问题可分为物理型和数学型两类。物理型主要依据物理概念、定理、写律求解。数学型则是在根据物理规律列方程后,依靠数学中求极值的知识求解。
例6 如图8所示,两带电量为+Q的点电荷相距2L,MN是两电荷连线的中垂线,求MN上场强的最大值。
针对训练1:下列选项中的各1/4圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各1/4圆环间彼此绝缘。坐标原点
处电场强度最大的是
针对训练2:如图所示,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q(q>0)的固定点电荷。已知b点处的场强为零,则d点处场强的大小为(k为静电力常量).
针对训练3:如图所示,xOy平面是无穷大导体的表面,该导体充满z?0的空间,z>0的空间为真空。将电荷量为q的点电荷置于z轴上z=h处,则在xOy平面上会产生感应电荷。空间任意一点处的电场皆是由点电荷q和导体表面上的感应电荷共同激发的。已知静电平衡时导体内部场强处处为零,则在z轴上z=h/2处的场强大小为(k为静电力常量)( )
针对训练4:如图所示,一半径为r的圆环上均匀分布着电荷量为+Q的电荷,在垂直于圆环面且过圆心0的中轴线上有A、B、C三个点,C和0、0和A间的距离均为d,A、B间的距离为2d,在B点处固定一电荷量为+q的点电荷。已知A点处的电场强度为零,k为静电力常量,求: (1)0点的电场强度E,; (2)C点的电场强度E。
针对训练5.均匀带电的球体在球外空间产生的电场等效于电荷集中于球心处产生的电场。如图所示,在半球体上均匀分布正电荷,总电荷量为q,球半径为R,MN为通过半球顶点与球心O的轴线,在轴线上有A、B两点,A、B关于O点对称,AB=4R。已知A点的场强大小为E,则B点的场强大小为 ( )
A. B. C. D.
针对训练6.已知均匀带电球壳内部电场强度处处为零,电势处处相等.如图所示,正电荷均匀分布在半球面上,Ox为通过半球顶点与球心O的轴线.A、B为轴上的点,且OA=OB.C、D为直径上的两点,且OC=OD.则下列判断正确的是( ) A. A点的电势与B点的电势相等
B. C点的电场强度与D点的电场强度不相同 C. A点的电场强度与B点的电场强度相同
D. 在A点由静止开始释放重力不计的带正电粒子,该粒子将沿AB做匀加速直线运动