SARS传播的数学模型及对经济的影响 数学建模全国赛优秀论文

内容发布更新时间 : 2024/11/17 19:19:01星期一 下面是文章的全部内容请认真阅读。

2003CMCM

SARS传播的数学模型及对经济的影响

(轩辕杨杰整理)

指导老师:覃思义

李彦麟 李小华 刘 纽

SARS传播的数学模型及对经济的影响

摘要

本文针对SARS的传播以及对经济的影响分别建立了数学模型。

首先,对附件1提供的早期模型,认为“传染概率”的说法欠妥,传染期限L的确定缺乏医学上的支持,使模型的说服力降低。模型中借鉴广东香港的参数来预测北京的疫情走势,不失为一种方法,但在不同地区因政策,地域的不同,病毒的传播和控制呈现不同的特点,使不同城市之间的可比性降低。故借鉴法存在一定的适用范围,且不能对首发城市进行预测。

对于第二问,在分析常用传染病模型的局限性后,文中把患者所处的状态明确划分为潜伏阶段、发病阶段和隔离阶段,根据各阶段的转化关系建立了第一个数学模型。考虑到发病和被隔离等事件发生的随机性,本文在原有模型的基础上适当改进,建立了随机模拟模型。通过对5月10日以前数据的拟合,并经过500次模拟,对北京的疫情进行了预测:7月上旬北京将基本解除疫情,累计病例约2800多人。预测结果与实际情况符合得很好。

另外,改变有关参数,发现提前5天采取严格的隔离措施,将使疫情解除的时间提前约10天,累计人数降至1958人;若延迟5天采取措施,疫情将推迟11天,累计人数达4487人。根据这些预测,文中对卫生部门采取控制措施提出了相关建议。

对第三个问题,本文研究SARS 对入境旅游人数的影响,建立了数学模型。通过数据拟合的方法确定日增长病例数对旅游人数的影响,预测9~12月份入境旅游人数分别为24.02,36.06,33.04,25.85万人。与往年同期相比,9月降低了23.5个百分点,10月以后影响逐步减小,经济进入恢复时期。

对于第四个问题,给报刊写了一篇通俗短文,说明了建立传染病数学模型的重要性。

最后在模型的评价中,对该模型优于原附件1模型的方面作了说明,特别说明了建立一个真正能预测和为预防、控制提供可靠、足够的信息的模型需要满足的条件和困难之处。

一、 问题的提出

2002年至2003年,SARS(严重急性呼吸道综合症,俗称非典型肺炎)悄然无息地靠近我们的生活,在潜伏一段时间后忽然爆发,在全球掀起了轩然大波。作为重灾区的国家之一,我国的经济发展和人民生活受到了很大的影响。我们从中得到了许多重要的经验和教训,认识到定量研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。对此,要求对SARS的传播建立数学模型,具体要求如下:

1、对附件1所提供的一个早期的模型,评价其合理性和实用性。 2、对SARS的传播建立一个自己的模型,并说明: (1) 为什么优于附件1中的模型;

(2) 怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,以及这样做的困难之处。

(3) 对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。(附件2提供的数据供参考。)

3、收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。(附件3提供的数据供参考。)

4、给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。

二、 对早期模型的评价

附件1的模型主要采用“数据拟合”和“借鉴参数”的方法对北京疫情走势进行预测。

在数据拟合方面,该模型中有两个疑点:

1、感染期限L的确定。由于被严格隔离、治愈、死亡等原因,感染者在某一时段后不再具有对易感人群的传染力,故对病毒的传染加上感染期限是合理的。但在对该参数的确定上,作者为了较好地拟合各阶段的数据 ,通过人为调试来确定L的取值,缺乏医学上的支持,使模型的说服力减弱,合理性和可靠性大大降低。

2、文中认为“K代表某种环境下一个人传染他人的平均概率”。但从模型的公式中可以看出,参数K的实际意义是一个病人平均每天传染其他人的个数。两者之间有实质的区别,文中的说法显然不妥。

从预测思想来看,该模型是借鉴先发地区——广东、香港的有关参数对北京的疫情进行预测的。由于广东、香港的疫情和控制都在北京之前,已经过了高峰期,到5月8日为止每日新增病例已降至10来例,基本处于后期控制阶段。而当时北京的疫情刚过了高峰期,正处于社会剧烈调整时期,数据较为凌乱,略有下降趋势,但不明显。可见在当时,采取这种借鉴是无奈之举。

但是由于城市之间的政策,风俗习惯等不同,城市之间的可比性不强,借鉴存在很大的局限性。如在香港,由于对传播机制认识不足,中途又出现高度感染的特殊情况。另外使用借鉴法无法对首发城市进行预测。

1

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi