SARS传播的数学模型及对经济的影响 数学建模全国赛优秀论文

内容发布更新时间 : 2025/1/11 23:14:22星期一 下面是文章的全部内容请认真阅读。

?dS?dt??kIS??dI?kIS?hI??dt?dR?hI??dt??S?I?R?N (1)

变量和符号说明:

k ——传染率:每个病人平均每天有效接触(足以使被解除者感染)的人

数。

h ——退出率:单位时间内治愈和死亡人数占感病者人数的百分数。

S(t)——易感人群的总数。

I(t)——感病者总数。 R(t)——退出者总数。

N——一个城市总人口数。

观察附件二中给出的数据,我们发现截至6月23日,感病者累计为2521人,远远小于北京城市的总人口数150万人,故认为感病者和退出者对易感人群的总数影响不大,易感者总人数I为一常数。原方程变形为:

?dI?kIN?hI??dt (2) ??dR?hI??dt注意到退出者不是我们研究的范围,故方程组(2)实际上是一个常微分方程

dIdt?kNI?hI??I (3)

其中??kN?h,

不难用分离变量法解出:

I(t)?I0e??t (4)

其中I0为初始值。

根据以上分析我们可以看出,常微分方程的传染病模型只适用于病例数与总人口数具有可比性的情况。当病例数远小于总人口数时,常微分方程模型的实质与附件1的模型相同,感病人数将随时间以指数增长。

考虑这一特点,我们用计算机跟踪病毒的个体传播情况,建立了模拟模型。

(四)计算机模拟模型:

在该模型中,我们将传染系统中的人分为五类:

自由携带者(f[t])——身上携带病毒并均匀散布在人群中的患者,根据基

3

本假设自由携带者在潜伏期内不具有传染力,

日增患者(x[t])——每天被医疗部门发现并加以隔离的感病者

被隔离者(y[t])——因曾与自由携带者接触而被怀疑携带SARS病毒的人 有效接触者(z1[t])——每日与自由携带者接触并感染上病毒的人 无效接触者(z2[t])——每日与自由携带者接触但未染上病毒的人 并作出如下假设:

1、由于传染性SARS最初(1~2天)的症状通常为发热(?38o),发热通常为高热[1]。症状明显,易于辨认,故可认为自由携带者发病后当天或第二天就立即入院治疗,入院后不会再参与疾病的传播。

2、根据实际情况,假设SARS病人被发现的三天内,有关部门将采取措施,将部分与病源有效接触者隔离,这部分人即使发病后也不会参与疾病的传播。

3、与病源有效接触者必然发病。根据基本假设,潜伏期一般为2至7天,这里取为5天。(这一假设在改进模型中有进一步的讨论。)

另外,对模拟模型中出现的符号变量说明如下:

k1 ——有效接触率,表示一个自由携带者平均每天有效接触的人数。 k2 ——无效接触率,表示一个自由携带者平均每天无效接触的人数。

(包括有效接触和无效接触)的人群中可以控制?——与自由携带者接触后

的人数所占的百分比。

模拟模型中个体传播情况如图1所示:自由携带者1~5天处于潜伏期,不具有传染能力;5天后发病,发病后每天有效接触k1人,2天后(第7天)被隔离,在隔离前每天无效接触k2人。与病源接触后的可控人群(占接触者总人数的?)在3天后被视为疑似病人。疑似病人中的有效接触者在接触病源的第7天被发现确认为日增患者,而有效接触者中其他人作为自由携带者留在人群中,继续这之前的个体传播。

有效接触者 自由携带者 第6,7天 3天后 自由携带者 无效接触者 被隔离者 7天中 7 天后 日增患者 3天后 4天后 日增患者 被隔离者

>>展开全文<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi