内容发布更新时间 : 2025/1/11 23:21:12星期一 下面是文章的全部内容请认真阅读。
当培养基中不存在抑制细胞生长的物质时,细胞的生长速率与基质浓度关系(Monod方程式)如下: μ=μmax S/(Ks+ S)
μ:菌体的生长比速. S:限制性基质浓度. Ks:半饱和常数. μmax: 最大比生长速度
Monod方程的参数求解(双倒数法):将Monod方程取倒数可得: 1/μ=1/μmax+ Ks/μmax S或S/μ= S/μmax+ Ks/μmax
这样通过测定不同限制性基质浓度下,微生物的比生长速度,就可以通过回归分析计算出Monod方程的两个参数。 36、什么是初级代谢产物?什么是次级代谢产物?
初级代谢产物是指微生物产生的,生长和繁殖所必需的物质,如蛋白质、核酸等。
次级代谢产物是指由微生物产生的,与微生物生长、繁殖无关的一类物质。
37、什么是一类发酵?二类发酵?三类发酵?
一类发酵:产物形成与底物利用直接相关,为生长联系型,又称简单发酵型,产物直接由碳源代谢而来,产物生成速度的变化与微生物对碳源利用速度的变化是平行的,产物生成与微生物的生长也是平行的。在这些发酵过程中,菌体的生长、基质的消耗、产物的生成三个速度都有一个高峰,三高峰几乎同时出现。
二类发酵:产物形成与底物利用间接相关,为部分生长联系型,又称中间发酵型,产物不是碳源的直接氧化产物,而是菌体代谢的主流产
物。它的特点是在发酵的第一时期碳源大量消耗用于菌体的迅速增长而产物的形成很少或全无,第二时期碳源大量消耗用于产物的高速合成及菌体的生长。
三类发酵:产物形成与底物利用不相关,为非生长联系型,又称复杂发酵型,产物的生成在菌体生长和基质消耗完以后才开始,与菌体生长不相关,与基质消耗无直接关系,所形成的产物为次级代谢产物。 38、什么是连续培养?什么是连续培养的稀释率?
由于新鲜培养基不断补充,所以不会发生营养物的枯竭,另一方面,发酵液不断取出,发酵罐内的微生物始终处于旺盛的指数生长期,罐内细胞浓度X、比生长速率μ、以及t, pH等都保持恒定。 稀释率(D):补料速度与反应器体积的比值(h-1) 39、解释连续培养富集微生物的原理?
菌的积累速率=生长速率-流出速率,调节培养基,使目的菌的流出速率<生长速率,杂菌的流出速率>生长速率,就起到富集作用 40、何氧容易成为好氧发酵的限制性因素?
氧是需氧微生物生长所必需的。氧往往容易成为控制因素,是因为氧在水中的溶解度很低,培养基因含有大量的有机和无机物质,氧的溶解度比水中还要更低。在对数生长期即使发酵液中的氧浓度达到饱和,若此时终止供氧,发酵液中的溶氧可在几分钟内全部耗尽,使溶氧成为控制因素。
发酵工程..部分题库及答案2
41、临界溶氧浓度、氧饱和度的概念?
临界氧浓度:CCr临界氧浓度:指不影响菌的呼吸所允许的最低氧浓度。
氧饱和度:发酵液中氧的浓度/临界溶氧溶度
饱和溶氧浓度:在一定温度和压力下,空气中的氧在水中的溶解度。(mol/m3)
42、影响微生物需氧的因素有哪些?
细胞浓度直接影响培养液的摄氧率,在分批发酵中摄氧率变化很大,不同生长阶段需氧不同,对数生长后期达最大值。培养基的成分和浓度显著影响微生物的摄氧率,碳源种类对细胞的需氧量有很大影响,一般葡萄糖的利用速度比其他的糖要快。
43、发酵液中的体积氧传递方程?其中Kla的物理意义是什么? 以单位体积的液体中所具有的氧的传递面积为 a (m2/m3)
OTR=KLα (C* –CL ) KLα以氧浓度为推动力的容积氧传递系数,反映了设备的供氧能力 44、如何调节摇瓶发酵的供氧水平? 往复,频率80-120分/次,振幅 8cm 旋转,偏心距转速250rpm 装液量,一般取1/10左右: 250ml 15-25 ml 500ml 30 ml 750ml 80 ml
45、如何调节通气搅拌发酵罐的供氧水平?
一般认为,发酵初期较大的通风和搅拌而产生过大的剪切力,对菌体的生长有时会产生不利的影响,所以有时发酵初期采用小通风,停搅拌,不但有利于降低能耗,而且在工艺上也是必须的。但是通气增大的时间一定要把握好。
46、氧的供需研究与反应器设计与放大的关系?
发酵过程放大困难的原因就在放大时不可能同时做到几何相似、流体运动学相似和流体动力学相似,当在小试研究时某一个对生产产生影响的重要因素没有被观察到,而这个因素恰恰在放大时成为关键因子时,就会造成整个发酵过程的失败(供氧、混合、剪切)。 47、发酵过程糖代谢、氮代谢有什么规律,为什么?
糖代谢:特别是快速利用的糖,分解成小分子酸、醇,使pH下降。糖缺乏,pH上升,是补料的标志之一氮代谢:氨基酸被利用后产生NH3 ,pH会上升;尿素被分解成NH3,pH上升。
微生物生长和产物合成与糖代谢有密切关系。糖的消耗反映产生菌的生长繁殖情况,反映产物合成的活力。菌体生长旺盛糖耗一定快,残糖也就降低得快通过糖含量的测定,可以控制菌体生长速率,可控制补糖来调节pH,促进产物合成,不致于盲目补糖,造成发酵不正常。 氮利用快慢可分析出菌体生长情况,含氮产物合成情况。但是氮源太多会促使菌体大量生长。有些产物合成受到过量铵离子的抑制,因此必须控制适量的氮。通过氨基氮和氨氮的分析可控制发酵过程,适时采取补氨措施。发酵后期氨基氮回升,这时就要放罐,否则影响提取过程。
48、发酵过程为什么要补料?补些什么?
在分批培养过程中补入新鲜的料液,以克服营养不足而导致的发酵过早结束的缺点。在这样一种系统中可以维持低的基质浓度,避免快速利用碳源的阻遏效应;可以通过补料控制达到最佳的生长和产物合成
条件;还可以利用计算机控制合理的补料速率,稳定最佳生产工艺。 发酵基质和缓冲液等。
49、补料过多或过少对发酵有什么影响?
投料过多造成菌体细胞大量生长,无法稳定的产生发酵产物,导致菌体生产力下降,同时改变发酵液流变学性质。如果补料过少,则使菌体过早进入衰退期,引起菌体衰老和自,同样使生产力下降。 50、 发酵过程中pH会不会发生变化为什么? 发酵过程中pH是不断变化的
1)糖代谢特别是快速利用的糖,分解成小分子酸、醇,使pH下降。糖缺乏,pH上升,是补料的标志之一
2)氮代谢当氨基酸中的-NH2被利用后pH会下降;尿素被分解成NH3,pH上升,NH3利用后pH下降,当碳源不足时氮源当碳源利用pH上升。
3)生理酸碱性物质利用后pH会上升或下降
4)某些产物本身呈酸性或碱性,使发酵液pH变化。如有机酸类产生使pH下降,红霉素、洁霉素、螺旋霉素等抗生素呈碱性,使pH上升。
5)菌体自溶 pH上升,发酵后期,pH上升
6)杂菌的污染,pH下降
51、 pH对发酵的影响表现在哪些方面?
(1)pH影响酶的活性。当pH值抑制菌体某些酶的活性时使菌的新陈代谢受阻。
(2)pH影响微生物细胞膜所带电荷。从而改变细胞膜的透性,影响微生物对营养物质的吸收及代谢物的排泄,因此影响新陈代谢的进行。
(3)pH值影响培养基某些成分和中间代谢物的解离,从而影响微生物对这些物质的利用。
(4)pH值影响代谢方向。pH不同,往往引起菌体代谢过程不同,使代谢产物的质量和比例发生改变。例如黑曲霉在pH2~3时发酵产生柠檬酸,在pH近中性时,则产生草酸。谷氨酸发酵,在中性和微碱性条件下积累谷氨酸,在酸性条件下则容易形成谷氨酰胺和N-乙酰谷氨酰胺。
(5)pH在微生物培养的不同阶段有不同的影响。 52、温度对发酵有哪些影响?
(1)温度影响反应速率 发酵过程的反应速率实际是酶反应速率,酶反应有一个最适温度。
从阿累尼乌斯方程式可以看到 dlnKr/dt=E/RT2(平方)