FANUC系统特殊功能指令在数控编程中的应用收集资料

内容发布更新时间 : 2024/12/25 9:17:54星期一 下面是文章的全部内容请认真阅读。

FANUC系统特殊功能指令在数控编程中的应用

2008年03月25日星期二11:07 FANUC系统特殊功能指令在数控编程中的应用利用数控系统中的特殊功能指令编写数控加工程序,可以达到简化数控加工程序,提高编程效率的目的。该文通过实例,介绍了FANUC系统中可编程参数自动设定指令G10与系统中宏指令在利用数控系统中的特殊功能指令编写数控加工程序,可以达到简化数控加工程序,提高编程效率的目的。该文通过实例,介绍了FANUC系统中可编程参数自动设定指令G10与系统中宏指令在数控编程中配合使用的方法和技巧,可为特殊零件的数控加工程序编制提供参考.在编制零件的数控加工程序时,经常会遇到一些特殊结构的零件,需要加工的部位,其结构相同或相似并且按照一定的规律分布。对于编程中常见的圆周等分、矩阵等分的孔的加工,我们可以采用厂家提供的固定循环程序来解决,但对于一些特殊零件,其分布的加工部位结构可能是二维和三维轮廓。针对这种情况,我们也可以采取编写子程序的方法,将加工内容相同的部分编成子程序,然后由主程序多次调用,以此来达到简化程序的目的。那么,上述方法是不是唯一的解决办法呢?在实践中我们发现,数控系统为用户提供了许多具有特殊意义的G指令、宏指令以及参变量。这就使我们在编制特殊零件的加工程序时,更容易编制零件的相同加工内容部分的通用程序,而且采用特殊G指令及宏指令、参变量编程,使数控程序更加简化,更具灵活性,如FANUC 15M系统中的可编程参数设定指令G10以及相关的宏指令等。一、可编程参数设定指令G10及宏指令FANUC 15M系统中的G10指令,可实现刀具几何参数的设定与编辑功能,由程序指令变更刀具加工过程中的半径补偿量。其另一功能是在加工程序中实现工件坐标系的设定与设定值的变更。1.G10指令变更刀具补偿量格式:G90/G91 G10 L11 PR;其中,变量L-赋值为11,表示变更刀具补偿量方式;P-刀具补偿号;R-刀具的补偿量;G90-覆盖原有补偿量;G91-在原有补偿量的基础上累加。在程序中通过改变R变量中的刀具半径补偿量,实现零件轮廓粗加工时调整加工余量,使用同一把刀具实现粗、精加工。2.G10指令实现工件坐标系的设定、变更格式:G90/G91 G10 L2 PX YZ;其中,变量L-赋值为2表示变更工件坐标系方式;P-工件坐标系,赋值1~6表示G54~G59;X、Y、Z-工件坐标系原点坐标值;G90-覆盖原有补偿量;G91-在原有补偿量的基础上累加。利用G10工件坐标系的设定、变更功能,可实现工件坐标系的设定、修改和平移。3.用户宏指令(1)变量的赋值与运算格式:#i=#j+#k;FANUC系统中以\作为变量名,\后的数值为变量的下标,用来区分各变量。\表示变量的赋值,\为被赋值的变量,\右边可以是实际值或表达式。表达式中可包含\、\、\\运算符以及三角函数运算。(2)无条件转移指令GOTO格式:GOTO n;n表示转移到目的程序段的行号。该指令将无

条件转移到指定的程序段。(3)条件转移指令IF格式:IF[conditional

expression]GOTO n;\中是一个逻辑运算式,逻辑运算功能指令有:EQ:\;NE:\GT:\;GE:\LT:\;LE:\量、表达式均可参与逻辑运算。n是转移目标程序段的行号。当\中逻辑运算式成立时,程序将转移到n所指定的程序段,否则,继续执行下一程序段。在数控编程中,我们可以根据零件结构的特点,灵活运用数控系统中的特殊指令。例如,将G10指令与用户宏指令配合使用,可以使零件的加工程序更加简化,达到事半功倍的效果。程序可以缩短到原来的1/3,甚至更短。二、应用实例分析1.零件特点图1是橡胶传送带的成型模板。齿形为曲线凹槽,横截面为梯形,齿形成直线等距排列。初始工件坐标系设定为G54原点位置.2.程序处理首先在初始工件坐标系G54下,编写模板零件的第一个齿形加工宏程序O7001。在零件的加工过程中,由主程序O7000调用O7001宏程序。第一个齿形加工完成后,利用可编程参数设定指令G10的工件坐标系变更功能,在加工其他齿形时通过变更初始工件坐标系G54的设定值,使工件坐标系按齿形排列间距产生平移,为下一齿形的加工重新自动设定工件坐标系。程序执行框图如图2所示。宏程序O7001中利用系统宏指令的参数计算以及判断循环功能,通过多次循环执行,将各齿形依次加工完成。下面是具体加工程序。O7000(T-XING CHUAN SONG DAI)(KMC-4000SV)G00 G90 G80 G49 G53 Z0 N10 T25 M06(ENDMILL D=25MM)G00 G90 G54 X812.554 Y-330.85 S220 M03 G43 Z20.H25 G65 P7001 B=6 GOO G49 G53 Z0 M05 T0 M06 M30 O7001(MACRO)#10=0 N20 G00 G90 G54 X812.554 Y-330.85 Z5.G01 Z-20.2 F40 X618.961 G02

X600.095 Y-323.983 I0 J29.35 G01 X494.334 Y-235.239 G00 Z75.X454.5 Y-201.815 Z5.G01 Z-20.2 X312.265 Y-82.465 G02 X312.265 Y82.465 I69.196 J82.465 G01 X454.5 Y201.815 G00 Z75.X 494.334 Y235.239 Z5.G01 Z-20.2 X600.095 Y323.983 G02 X618.961 Y330.85 I18.866 J-22.483 G01 X812.554 G00 Z75.X 273.811 Y0 Z5.G01 Z-20.2 X0 G00 Z75.X 275.449 Y18.713 Z5.G01 Z-20.2 G02 X253.144 Y0 I-22.305 J3.937 G02 X275.449 Y-18.713 I0 J-22.65 G00 Z100.G91 G10 L2 P1 X454.5 Y0 Z0#10=#10+1 IF[#10 EQ#2]GOTO 100 GOTO 20 N100 G90 G10 L2 P1 X-1583.75 Y-560.03 Z-683.7三、结束语采用可编程的参数设定指令G10,通过编程的方式更改刀具补偿量、根据需要重新设定工件坐标系,使工件坐标系可在任意方向上移动。将该指令与宏指令配合使用,增强了零件加工程序的逻辑性和灵活性,进一步扩展了数控系统的功能。零件加工程序大幅度简化,提高了编程效率,降低了编程差错率。在数控程序中采用特殊功能指令及参变量,为解决一些特殊及复杂零件的加工程序编制问题打开了思路。FANUC系统功能1、控制轨迹数(Controlled Path)CNC控制的进给伺服轴(进给)的组数。加工时每组形成一条刀具轨迹,各组可单独运动,也可同时协调运动。2、控制轴数(Controlled Axes)CNC控制的进给伺服轴总数/每一轨迹。3、联动控制轴数(Simultaneously Controlled Axes)每一轨迹同时插补的进给伺服轴数。4、PMC控制轴(Axis control by PMC)由PMC(可编程机床控制器)控制的进给伺服轴。控制指令编在PMC的程序(梯形图)中,因此修改不便,故这种方法通常只用于移动量固定的进给轴控制。5、Cf轴控制(Cf Axis Control)(T系列)车床系统中,主轴的回转位置(转角)控制和其它进给轴一样由进给伺服电动机实现。该轴与其它进给轴

联动进行插补,加工任意曲线。6、Cs轮廓控制(Cs contouring control)(T系列)车床系统中,主轴的回转位置(转角)控制不是用进给伺服电动机而由FANUC主轴电动机实现。主轴的位置(角度)由装于主轴(不是主轴电动机)上的高分辨率编码器检测,此时主轴是作为进给伺服轴工作,运动速度为:度/分,并可与其它进给轴一起插补,加工出轮廓曲线。7、回转轴控制(Rotary axis control)将进给轴设定为回转轴作角度位置控制。回转一周的角度,可用参数设为任意值。FANUC系统通常只是基本轴以外的进给轴才能设为回转轴。8、控制轴脱开(Controlled Axis Detach)指定某一进给伺服轴脱离CNC的控制而无系统报警。通常用于转台控制,机床不用转台时执行该功能将转台电动机的插头拔下,卸掉转台。9、伺服关断(Servo Off)用PMC信号将进给伺服轴的电源关断,使其脱离CNC的控制用手可以自由移动,但是CNC仍然实时地监视该轴的实际位置。该功能可用于在CNC机床上用机械手轮控制工作台的移动,或工作台、转台被机械夹紧时以避免进给电动机发生过流。10、位置跟踪(Follow-up)当伺服关断、急停或伺服报警时若工作台发生机械位置移动,在CNC的位置误差寄存器中就会有位置误差。位置跟踪功能就是修改CNC控制器监测的机床位置,使位置误差寄存器中的误差变为零。当然,是否执行位置跟踪应该根据实际控制的需要而定。11、增量编码器(Increment pulse coder)回转式(角度)位置测量元件,装于电动机轴或滚珠丝杠上,回转时发出等间隔脉冲表示位移量。由于码盘上没有零点,故不能表示机床的位置。只有在机床回零,建立了机床坐标系的零点后,才能表示出工作台或刀具的位置。使用时应该注意的是,增量编码器的信号输出有两种方式:串行和并行。CNC单元与此对应有串行接口和并行接口。12、绝对值编码器(Absolute pulse coder)回转式(角度)位置测量元件,用途与增量编码器相同,不同点是这种编码器的码盘上有绝对零点,该点作为脉冲的计数基准。因此计数值既可以映位移量,也可以实时地反映机床的实际位置。另外,关机后机床的位置也不会丢失,开机后不用回零点,即可立即投入加工运行。与增量编码器一样,使用时应注意脉冲信号的串行输出与并行输出,以便与CNC单元的接口相配。(早期的CNC系统无串行口。)13、FSSB(FANUC串行伺服总线)FANUC串行伺服总线(FANUC Serial Servo Bus)是CNC单元与伺服放大器间的信号高速传输总线,使用一条光缆可以传递4-8个轴的控制信号,因此,为了区分各个轴,必须设定有关参数。14、简易同步控制(Simple synchronous

control)两个进给轴一个是主动轴,另一个是从动轴,主动轴接收CNC的运动指令,从动轴跟随主动轴运动,从而实现两个轴的同步移动。CNC随时监视两个轴的移动位置,但是并不对两者的误差进行补偿,如果两轴的移动位置超过参数的设定值,CNC即发出报警,同时停止各轴的运动。该功能用于大工作台的双轴驱动。15、双驱动控制(Tandem control)对于大工作台,一个电动机的力矩不足以驱动时,可以用两个电动机,这就是本功能的含义。两个轴中一个是主动轴,另一个为从动轴。主动轴接收CNC的控制指令,从动轴增加驱动力矩。16、同步控制

(Synchrohouus control)(T系列的双迹系统)双轨迹的车床系统,可以实现一个轨迹的两个轴的同步,也可以实现两个轨迹的两个轴的同步。同步控制方法与上述\简易同步控制\相同。17、混合控制(Composite control)(T系列的双迹系统)双轨迹的车床系统,可以实现两个轨迹的轴移动指令的互换,即第一轨迹的程序可以控制第二轨迹的轴运动;第二轨迹的程序可以控制第一轨迹的轴运动。18、重叠控制

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi