内容发布更新时间 : 2024/11/19 15:14:31星期一 下面是文章的全部内容请认真阅读。
图2-12
2-13 试计算图示桁架指定杆件的内力,图中长度单位为m,力的单位为kN。
图2-13
2-14 物体A重P=10N,与斜面间摩擦系数f?f?=0.4。
(1)设物体B重Q=5N,试求A与斜面间的摩擦力的大小和方向。
(2)若物体B重Q=8N,则物体与斜面间的摩擦力方向如何?大小多少?
图2-14 图2-15
2-15 均质杆的A端放在粗糙的水平面上,杆的B端则用绳子拉住,设杆与地板的摩擦角为?,杆与水平面的夹角为45o。问:当绳子与水平线的倾角?等于多大时,杆开始向右滑动。
2-16 图示为一制动设备的尺寸及支承情况,轮与杆DE间的静摩擦系数f=0.4,物块重Q=2000kN,r=L=10cm,R=2.5L,其余各杆重量不计,试求:阻止物块下降所需的铅直力P的大小,杆AB和DE均处于水平位置。
5
图2-16 图2-17 2-17 用尖劈顶起重物的装置如图所示,重物与尖劈间的摩擦系数为f,其他有圆辊处为光滑接触,尖劈顶角为?,且tg??f,被顶举的重物重量设为Q。试求:(1)顶举重物上升所需的P值;(2)顶住重物使其不致下降所需的P值。
2-18 一起重用的夹具由ABC和DEG两个相同的弯杆组成,并且由BE连接,B和E都是铰链,尺寸如图所示,试问要能提起重物Q,夹具与重物接触面处的摩擦系数f应为多大?
第三章 空间一般力系
3-1 图示空间构架由三根直杆组成,在D端用球铰连接,A、B和C端则用球铰固定在水平地板上,若挂在D端的物重G=10kN,试求铰链A、B和C的反力。各杆重量不计。
图3-1 图3-2
3-2 三连杆AB、AC、AD铰接如图。杆AB水平,绳AEG上悬挂重物P=10kN。在图示位置,系统保持平衡,求G处绳的张力T及AB、AC、AD三杆的约束力。xy平面为水平面。
3-3 空心楼板ABCD,重Q=2.8kN,一端支承在AB的中点E,并在H、G两处
AD用绳悬挂,已知HD?GC?,求H、G两处绳的张力及E处的反力。
8
6
图3-3 图3-4
3-4 图示三圆盘A、B和C的半径分别为15cm、10cm和5cm。三轴OA、OB和OC在同一平面内,∠AOB为直角。在这三个圆盘上分别作用力偶,组成各力偶的力作用在轮缘上,它们的大小分别等于10N,20N和P。如这三圆盘所构成的物系是自由的,求能使物系平衡的力P和角?的大小。 3-5 图示一起重机,一边用与水平线成60o倾角的绳CD拉住,且CD在与ABC平面垂直的平面内,另一边由跨过滑轮O并悬挂着Q1=100N的重物且与CE垂直的水平绳拉住,已知:起重机自重Q2=2kN,荷载P=4kN,L1=100cm,L2=150cm,L3=420cm,不计摩擦。试求:支座A、B的反力及绳CD的张力。
3-6 重为G的均质薄板可绕水平轴AB转动,A为球铰,B为蝶形铰链,今用绳索CE将板支撑在水平位置,并在板平面内作用一力偶,设a=3m,b=4,h=5m,G=1000N,M=2000N·m。试求:绳的拉力及A、B处的约束反力。
图3-5 图3-6
3-7 已知作用在直角弯杆ABC上的力F1与x轴同方向,力F2铅直向下,且F1=300N,F2=600N,试求球铰A,辊轴支座C,以及绳DE、GH的约束反力。
7
图3-7 图3-8
3-8 图示电动机M通过链条传动将重物Q等速提起,链条与水平线成30o角(x1轴平行于x轴)。已知:r=10cm,R=20cm,Q=10kN,链条主动边(下边)的拉力为从动边拉力的两倍。求支座A和B的反力以及链条的拉力。
3-9 正方形板ABCD由六根连杆支承如图。在A点沿AD边作用水平力P,求各杆的内力,板自重不计。
图3-9
第四章 运动学基础
4-1 偏心凸轮半径为R,绕O轴转动,转角???t(?为常量),偏心距OC=e,凸轮带动顶杆AB沿铅直线作往复运动,试求顶杆AB的运动方程和速度方程。
图4-1 图4-2
4-2 杆O1B以匀角速度?绕O1轴转动,通过套筒A带动杆O2A绕O2轴转动。若O1O2=O2A=L,???t。试分别用直角坐标法(坐标轴如图示)和自然法(以O1为原点,顺时针转为正向)求套筒A的运动方程。
4-3 点的运动方程为x=50t,y=500-5t2,其中x和y以m计,t以s计。求当t=0
8
时,点的切向加速度和法向加速度以及此时点所在处轨迹的曲率半径。 4-4 已知一点的加速度方程为ax=-6m/s2,ay=0,当t=0时,x0=y0=0,v0x=10m/s,v0y=3m/s,求点的运动轨迹,并用力学方法求t=1s时,点所在处轨迹的曲率半径。 4-5 已知图示机构的尺寸如下:O1A=O2B=AM=0.2M;O1O2=AB。如轮O1按
??15?trad的规律转动,求当t=0.5s时,杆AB上点M的速度和加速度。
图4-5 图4-6
4-6 升降机装置由半径R=50cm的鼓轮带动,如图所示,被升降物体的运动方程为x=5t2(t以s计,x以m计)。求鼓轮的角速度和角加速度,并求在任意瞬时,鼓轮边缘上一点的全加速度的大小。
4-7 在平行四连杆机构O1ABO2中,CD杆与AB固结,O1A=O2B=CD=L,O1A杆以匀角速度?转动,当O1A⊥AB时,求D点的加速度aD。
4-8 折杆ACB在图示平面内可绕O轴转动,已知某瞬时A点的加速度为a(m/s2),方向如图所示,试求该瞬时曲杆上B点的加速度。
图4-7 图4-8
4-9 两轮I、II,半径分别为r1=100mm,r2=150mm,平板AB放置在两轮上,如图示。已知轮I在某瞬时的角速度?=2rad/s,角加速度??0.5rad/s2,求此时平板移动的速度和加速度以及轮II边缘上一点C的速度和加速度(设两轮与板接触处均无滑动)。
9