内容发布更新时间 : 2025/1/5 23:05:00星期一 下面是文章的全部内容请认真阅读。
I1=I; end
I1=imresize(I1,[50 20]);%将图片统一划为50*20大小 I1=im2bw(I1,0.9); [m,n]=size(I1); inpt=zeros(1,m*n);
%%%%%%将图像按列转换成一个行向量 for j=1:n for i=1:m
inpt(1,m*(j-1)+i)=I1(i,j); end end
4.3.2 构造输入样本,按同样的方法,将前面分割出的样本归一化。
4.3.3 神经网络进行识别。
close all; clear all;
%%%%归一化训练样本%%%%%% I0=pretreatment(imread('0.jpg')); I1=pretreatment(imread('1.jpg')); I2=pretreatment(imread('2.jpg')); I3=pretreatment(imread('3.jpg')); I4=pretreatment(imread('4.jpg')); I5=pretreatment(imread('5.jpg')); I6=pretreatment(imread('6.jpg')); I7=pretreatment(imread('7.jpg')); I8=pretreatment(imread('8.jpg')); I9=pretreatment(imread('9.jpg')); I10=pretreatment(imread('A.jpg')); I11=pretreatment(imread('C.jpg')); I12=pretreatment(imread('G.jpg')); I13=pretreatment(imread('L.jpg')); I14=pretreatment(imread('M.jpg')); I15=pretreatment(imread('R.jpg')); I16=pretreatment(imread('H.jpg')); I17=pretreatment(imread('N.jpg'));
P=[I0',I1',I2',I3',I4',I5',I6',I7',I8',I9',I10',I11',I12',I13',I14',I15',I16',I17']; %输出样本%%%
T=eye(18,18);
%%bp神经网络参数设置
net=newff(minmax(P),[1000,32,18],{'logsig','logsig','logsig'},'trainrp'); net.inputWeights{1,1}.initFcn ='randnr'; net.layerWeights{2,1}.initFcn ='randnr'; net.trainparam.epochs=5000; net.trainparam.show=50; %net.trainparam.lr=0.003; net.trainparam.goal=0.0000000001; net=init(net);
%%%训练样本%%%% [net,tr]=train(net,P,T);
%%%%%%%测试%%%%%%%%% %I=imread('DSC01323.jpg'); I=imread('DSC01344.jpg'); dw=location(I);%车牌定位
[PIN0,PIN1,PIN2,PIN3,PIN4,PIN5,PIN6]=StringSplit(dw);%字符分割及处理
%%%%%%%%%%%测试字符,得到识别数值%%%% PIN0=pretreatment(PIN0); PIN1=pretreatment(PIN1); PIN2=pretreatment(PIN2); PIN3=pretreatment(PIN3); PIN4=pretreatment(PIN4); PIN5=pretreatment(PIN5); PIN6=pretreatment(PIN6);
P0=[PIN0',PIN1',PIN2',PIN3',PIN4',PIN5',PIN6']; for i=2:7
T0= sim(net ,P0(:,i)); T1 = compet (T0) ; d =find(T1 == 1) - 1 if (d==10) str='A'; elseif (d==11) str='C'; elseif (d==12) str='G'; elseif (d==13) str='L'; elseif (d==14) str='M'; elseif (d==15) str='R'; elseif (d==16)
str='H'; elseif (d==17) str='N'; else
str=num2str(d); end switch i case 2 str1=str; case 3 str2=str; case 4 str3=str; case 5 str4=str; case 6 str5=str; otherwise str6=str; end end
%%%%%%%显示定位后的分割出的车牌彩图,%%%
%%%%%%识别结果以标题形式显示在图上%%% s=strcat('渝',str1,str2,str3,str4,str5,str6); figure();
imshow(dw),title(s);
参考文献: