内容发布更新时间 : 2024/11/19 5:31:18星期一 下面是文章的全部内容请认真阅读。
精心整理
0
ln2x(4) 求函数y?3在趋向正无穷处的极限;
x>>symsx
>>limit(log(x)^2/x^3,inf) ans= 0 7、 求导数: (1) 求函数y?>>symsx >>y=1/x^2-3*x+3; >>diff(y,50) ans= (2) 求函数y?asinbec?ta在t?b处的3阶导数; symstabc y=a*sin(b*exp(c^t)+t^a); simple(subs(diff(y,t,3),t,b)) 8、 求不定积分: >>symsx >>int(1/sin(x)^3) ans=
-1/2/sin(x)^2*cos(x)+1/2*log(csc(x)-cot(x)) >>symsxa
精心整理
1?3x?3的50阶导数; 2x?t?精心整理
>>int(1/(a^2-x^2)) ans=
-1/2/a*log(a-x)+1/2/a*log(a+x) >>symsx
>>int((sqrt(x^2-3)-sqrt(x^2+3))/sqrt(x^4-9)) ans= (x^4-9)^(1/2)/(x^2-3)^(1/2)/(x^2+3)^(1/2)*asinh(1/3*3^(1/2)*x)-1/(x^2+3)^(1/2)*(x^4-9)^(1/2)/(x^2-3)^(1/2)*log(x+(x^2-3)^(1/2)) 9、 求定积分及广义积分 >>symsxa >>int(sqrt(x^2+a),-2,2) ans= 2*(4+a)^(1/2)+1/2*a*log(2+(4+a)^(1/2))-1/2*a*log(-2+(4+a)^(1/2)) >>symsx >>int(sin(x)^2*cos(x)^2,-pi,pi) ans= 1/4*pi >>symsxy >>int(int(x^2+y^2,y,1,x^2),1,2) ans= 1006/105
10、 求下面的积分,给出50位精度的数值: >>symsxy
精心整理
精心整理
>>J=int(int(sin(x)^2+sin(y)^2,y,1,x^2),1,2); >>vpa(J,50) ans=
11、 级数求和:
?n?1?n?1??z?1?n22nn??3n?1??z?1?n?1??n?n??1?>>symszn n?!zn2?x?1????k?02k?1?x?1?2k?1
?x?0?>>symsum((z-1)^n/(n^2*2^n),n,1,inf) ans= (1/2*z-1/2)*hypergeom([1,1,1],[2,2],1/2*z-1/2) >>symszn >>symsum((3*n+1)*(z-1)^n,n,1,inf) ans= (4*z-4)*(-1/(z-2)+3/4/(z-2)^2*(z-1)) >>symszn >>symsum(n*(-1)^(n+1)*z^n,n,1,inf) ans= z/(z+1)^2 >>symsxpositive >>symsk
>>simple(symsum(2/(2*k+1)*((x-1)/(x+1))^(2*k+1),k,0,inf)) ans=
log(-(1+((x^2-2*x+1)/(x^2+2*x+1))^(1/2))/(-1+((x^2-2*x+1)/(x^2+2*x+1))^(1/
精心整理
精心整理
2)))
精心整理