内容发布更新时间 : 2025/1/11 11:03:16星期一 下面是文章的全部内容请认真阅读。
电磁场理论 实验一
——利用Matlab模拟点电荷电场的分布
一.实验目的:
1.熟悉单个点电荷及一对点电荷的电场分布情况;
2.学会使用Matlab进行数值计算,并绘出相应的图形;
二.实验原理:
根据库伦定律:在真空中,两个静止点电荷之间的作用力与这两个电荷的电量乘积成正比,与它们之间距离的平方成反比,作用力的方向在两个电荷的连线上,两电荷同号为斥力,异号为吸力,它们之间的力F满足: F?k(式1)
由电场强度E的定义可知:
E?(式2)
对于点电荷,根据场论基础中的定义,有势场E的势函数为 U?Q1Q2?R 2RkQ?R 2RkQ (式3) R而 E???U (式4) 在Matlab中,由以上公式算出各点的电势U,电场强度E后,可以用Matlab自带的库函数绘出相应电荷的电场分布情况.
三.实验内容:
1. 单个点电荷
点电荷的平面电力线和等势线
真空中点电荷的场强大小是E=kq /r^2 ,其中k 为静电力恒量, q 为电量, r 为点电荷到场点P(x,y)的距离.电场呈球对称分布, 取电量q> 0, 电力线是以电荷为
起点的射线簇.以无穷远处为零势点, 点电荷的电势为U=kq /r,当U 取常数时, 此式就是等势面方程.等势面是以电荷为中心以r 为半径的球面.
? 平面电力线的画法
在平面上, 电力线是等角分布的射线簇, 用MATLAB 画射线簇很简单.取射线的半径为( 都取国际制单位) r0=0.12, 不同的角度用向量表示( 单位为弧度) th=linspace(0,2*pi,13).射线簇的终点的直角坐标为: [x,y]=pol2cart(th,r0).插入x 的起始坐标x=[x; 0.1*x].同样插入y 的起始坐标, y=[y; 0.1*y], x 和y 都是二维数组, 每一列是一条射线的起始和终止坐标.用二维画线命令plot(x,y)就画出所有电力线.
? 平面等势线的画法
在过电荷的截面上, 等势线就是以电荷为中心的圆簇, 用MATLAB 画等势线更加简单.静电力常量为k=9e9, 电量可取为q=1e- 9; 最大的等势线的半径应该比射线的半径小一点? r0=0.1.其电势为u0=k8q /r0.如果从外到里取7 条等势线, 最里面的等势线的电势是最外面的3 倍, 那么各条线的电势用向量表示为: u=linspace(1,3,7)*u0.从- r0 到r0 取偶数个点, 例如100 个点, 使最中心点的坐标绕过0, 各点的坐标可用向量表示: x=linspace(- r0,r0,100), 在直角坐标系中可形成网格坐标: [X,Y]=meshgrid(x).各点到原点的距离为: r=sqrt(X.^2+Y.^2), 在乘方时, 乘方号前面要加点, 表示对变量中的元素进行乘方计算.各点的电势为U=k8q. /r, 在进行除法运算时, 除号前面也要加点, 同样表示对变量中的元素进行除法运算.用等高线命令即可画出等势线contour(X,Y,U,u), 在画等势线后一般会把电力线擦除, 在画等势线之前插入如下命令hold on 就行了.平面电力线和等势线如图1, 其中插入了标题等等.越靠近点电荷的中心, 电势越高, 电场强度越大, 电力线和等势线也越密.
0.15单个点电荷的电场线与等势线0.10.050y-0.05-0.1-0.15-0.2-0.2-0.15-0.1-0.0500.050.10.15x图1
? 点电荷的立体电力线和等势面 立体电力线的画法
先形成三维单位球面坐标, 绕z 轴一周有8 条电力线[X,Y,Z]=sphere(8),每维都是9×9 的网格矩阵, 将X 化为行向量, 就形成各条电力线的终点x 坐标x=r0=X(:)′, 其他两个坐标也可同样形成终点坐标y=r0+Y(:)' , z=r0+Z(:)' .对x坐标插入原点x=[x(zeros(size(x))], 其他两个坐标如下形成y=[y(zeros(size(y))], z=[z(zeros(size(z))], 用三维画线命令plot3(x,y,z), 就画出所有电力线.
? 立体等势面的画法
画5 条等势面时, 各面的电势为u=linspace(1,3,5)+u0, 各等势面的半径为r=k6q. /u, 其中第一个球面的半径为rr=r(1).三维单位球面的坐标可由
[X,Y,Z]=sphere 命令形成, 每维都是21×21 的网格矩阵, 由于外球会包围内球, 因此把球面的四分之一设为非数, 表示割去该部分Z(X<0&Y<0)=nan. 用曲面命令可画出第一个曲面surf(rr6X,rr6Y,rr6Z), 只要取不同的半径就能画出不同的等势面.为了使等势面好看, 可设置一个颜色浓淡连续变化的命令shading interp.点电荷的立体电力线和等势面如图2, 旋转图片可从不同的角度观察.
正电荷电场线等势面的三维图形0.20.150.10.05z0-0.05-0.1-0.15-0.20.20.10-0.10-0.1-0.2-0.20.10.2yx
图2
2 一对点电荷
? 平面等势线的画法
仍然用MATLAB 的等高线命令画等势线.对于正负两个点电荷, 电量不妨分别取q1=2e- 9,q2=- 1e- 9, 正电荷在x 轴正方, 负电荷在x 轴负方, 它们到原点的距离定为a=0.02; 假设平面范围为xx0=0.05,yy0=0.04, 两个坐标向量分别x=linspace(- xx0,xx0,20)和y=linspace(- yy0,yy0,50).设置平面网格坐标为[X,Y]=meshgrid(x), 各点到两电荷的距离分别为r1=sqrt((X- a).^2+Y.^2)和r2=sqrt((X+a).^2+Y.^2).各点的电势为U=k6q1. /r1+k6q2. /r2, 取最高电势为u0=50, 最低电势取其负值.在两者之间取11 个电势向量u=linspace (u0,- u0,11), 等高线命令contour(X,Y,U,u,'k- ' )用黑实线, 画出等势线如图4所示, 其中, 左边从里到外的第6 条包围负电荷的等势线为零势线.
? 平面电力线的画法
利用MATLAB 的箭头命令, 可用各点的电场强度方向代替电力线.根据梯度可求各点的场强的两个分量[Ex,Ey]=gradient(- U),合场强为E=sqrt(Ex.^2+Ey.^2).
为了使箭头等长, 将场强Ex=Ex. /E,Ey=Ey. /E 归一化, 用箭头命令
quiver(X,Y,Ex,Ey)可标出各网点的电场强度的方向,异号点电荷对的场点方向如图3 所示.
为了画出连续的电力线, 先确定电力线的起点.电荷的半径可取为r0=0.002, 如图4 所示, 假设第一条电力线的起始角为30 度, 其弧度为q=30+pi /180, 起始点到第一个点电荷的坐标为x1=r0+cos(q),y=r0+sin(q), 到第二个点电荷的坐标只有横坐标x2=2+a+x1 不同.用前面的方法可求出该点到两个电荷之间的距离r1 和r2, 从而计算场强的两个分量以及总场强Ex=q1+x1 /r1^3 +q2+x2 /r2^3, Ey=q1+y/r1^3+q2+y/r2^3, E=sqrt(Ex6Ex+Ey6Ey).下面只要用到场强分量与总场强的比值, 在计算场强分量时没有乘以静电力常量k.由于电力线的方向与场强的切线方向相同, 取线段为s=0.0001,由此可求出终点的坐标为
x1=x1+s#Ex/E,y=y+s+Ey/E, 从而计算x2.以终点为新的起点就能计算其他终点.当终点出界时或者到达另一点电荷时, 这个终点可作为最后终点. 这种计算电力线的方法称为切线法.
一对点电荷的电场分布图0.050.040.030.020.010-0.01-0.02-0.03-0.04-0.05-0.05-0.04-0.03-0.02-0.0100.010.020.030.040.05yx图3