内容发布更新时间 : 2024/11/8 7:28:46星期一 下面是文章的全部内容请认真阅读。
l0,l120,d33,20p30,30q20;
⑵25岁的人至少再活20,最多活25年的概率; ⑶三个25岁的人均存活到80岁的概率。 1200
)?0 )?1000;l120?1000(1?解:⑴l0?1000(1? 120120
d33?l33?l34?1000? 125 ?
1203
l20?l50l507
q??0.3 ?;302020p30? l20l309 l45?l501
q??⑵20525 l2519 l80383
p?()?()?0.074646449⑶5525 l2519
4.若lx?100000( c?x
),l35?44000,求:⑴c的值;⑵生命表中的最大年龄;⑶从出生存活到50岁的概 c?x ??90
率;⑷15岁的人在40~50岁之间死亡的概率。 解:⑴ l35
90?xc?35)?0?100000()?44000。所以,c=90 ⑵lx?100000( ,所以, ⑶ c?35
90?xl504
l40?l5050p0?
l? ⑷2510q15?013
l?2。 1535.证明并作直观解释: ⑴ nm
qx?npx?n?mpx;
?
lx?n?lx?n?m证明:nmqxl?lx?n?lx?n?m ?npx?n?mpx xlxlx ⑵ n
qx?npx?qx?n;
l证明:x?n?lx?n?1nqx? l?lx?n?lx?nl?lx?n?1 ?npx?qx?n xlxxlx?n ⑶ n?m
px?npx?mpx?n 。
lx?证明:n?m
pn?ml?lx?n?lx?n?m x??npx?mpx?n xlxlx?n 6.证明: ??x ⑴ ?
lx?t?x?tdt?lx ;⑵ ? ??x t p?
x?x?tdt?1; ⑶?x
tpx?tpx?(?x??x?t);? ?t
tpx??tpx??x?t。 x 证明:⑴ ? ??0
lx?t?x?tdt?lx?0?lx???x?lx?l??lx ??x ?1 t
p? ??x l⑵ ?
x?t?10
x?x?tdt?0 ldl??1???x x?t1dlx?t?
l?(lx???x?lx)?1; xlx?tlx?0 x
??xtpx ???x(lx?t
l)?dlx?t?lx?dlx?lx?t⑶ x(lx)2 ?
dlx?tl?dlx?t?lx?tdldlx
l(x?t?)?tpx?(?x??x?t)xlxxlx?tlx ⑷
dlx?tlx?tdlx?t??lx?t
()?????tpx??x?t。 tpx??⑷ ?t?xlxlxlxlx?t 8.若40 l
?7746,l41?7681,计算?401: 4
⑴死亡均匀分布假设;⑵鲍德希假设; l??x 401 4 ?? q40
?0.008409068; 1?t?q40 ? ⑵ 40 14 ?? ⑶
⑶假设x解:⑴? ?tpx?e???t可令t?1,px? l41 ?e?? l40 ? 40 14 qx
??0.008444573。 1?(1?t)qx ???0.008426834
9.证明在鲍德希规律下,x q
n与n无关。 ?s(x)?1? 证明: n x ?
s(x?n)?s(x?n?1)1qx?? s(x)??x 所以,x q
n与n无关。
1某人10岁买了定期生存保险,这一保险使其从18岁到25岁每年得到2000元生存保险金,以附表2转换函数值计算这一年金现值。 ?88a10?解:2000
n10?8?1?n10?8?8?1
?2000?0.22775?455.5(元) n10
2.证明下列等式成立,并解释其含义。 nx?1
??ax?vpxax?1; 证明:ax?⑴ dx ⑵
nx?dx
??x?1?vpxa??x?1 ??a dx
??x?1?vpxa??x?1所以,a??x?1?vpxa??x?1; 证明:aa??x?1?vpxa??x?1
??x:n?ax:n?(1?nex);证明:a ax:n?(1?nex)??
nx?1?nx?n?1dn?d?(nx?n?1?dx?n) ?(1?x?n)?x?1x dxdxdx nx?nx?n ??x:n?a dx ⑶ ⑷ n
ax?v?npx?ax?n; n