内容发布更新时间 : 2024/11/14 13:15:46星期一 下面是文章的全部内容请认真阅读。
中北大学毕业论文
在流体动力学指出,存在于液体中的微气泡在声场的作用下振动,当声压达到一定的值时,气泡将迅速膨胀,然后突然闭合,在气泡闭合时产生冲击波,这种膨胀、闭合、振动等一系列动力学过程称为空化。
(3) 热学作用
如果超声波作用于介质时被介质所吸收,实际上也就是有能量吸收,同时,由于超声波的振动,使介质产生强烈的高频振荡介质相互摩擦产生热热量,这种能量使介质温度升高。
2.2超声波传感器介绍
总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。他们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。
压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。超声波传感器结构如下:
图 2-1超声波传感器外部结构 图 2-2超声波传感器内部结构
2.2.1 超声波测距原理及结构
电能或机械能转换成声能,接收端则反之。本次设计超声波传感器采用电气方式中的压电式 超声波传感器分机械方式和电气方式两类,它实际上是一种换能器,在发射端它把超声波换能器,它是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波
6
中北大学毕业论文
接收器。在超声波电路中,发射端输出一系列脉冲方波,脉冲宽度越大,输出的个数越多,能量越大,所能测的距离也越远。超声波发射换能器与接收换能器其结构上稍有不同,使用时应分清器件上的标志。
超声波测距的方法有多种:如往返时间检测法、相位检测法、声波幅值检测法。本设计采用往返时间检测法测距。其原理是超声波传感器发射一定频率的超声波,借助空气媒质传播,到达测量目标或障碍物后反射回来,经反射后由超声波接收器接收脉冲,其所经历的时间即往返时间,往返时间与超声波传播的路程的远近有关。测试传输时间可以得出距离。
假定s为被测物体到测距仪之间的距离,测得的时间为t/s,超声波传播速度为v/m·s-1表示,则有关系式(2-1)
s=vt/2 (2-1)
在精度要求较高的情况下,需要考虑温度对超声波传播速度的影响,按式(2-2)对超声波传播速度加以修正,以减小误差。
v=331.4+0.607T (2-2)
式中,T为实际温度单位为℃,v为超声波在介质中的传播速度单位为m/s。 超声波为直线传播方式,频率越高,绕射能力越弱,但反射能力越强,为此,利用超声波的这种性质就可制成超声波传感器。它是一种将其他形式的能转变为所需频率的超声能或是把超声能转变为同频率的其他形式的能的器件。目前常用的超声传感器有两大类,即电声型与流体动力型。电声型主要有:1.压电传感器;2.磁致伸缩传感器;3.静电传感器。流体动力型中包括有气体与液体两种类型的哨笛。由于工作频率与应用目的不同,超声传感器的结构形式是多种多样的,并且名称也有不同,例如在超声检测和诊断中习惯上都把超声传感器称作探头,而工业中采用的流体动力型传感器称为“哨”或“笛”。
压电传感器属于超声传感器中电声型的一种。探头由压电晶片、楔块、接头等组成,是超声检测中最常用的实现电能和声能相互转换的一种传感器件,是超声波检测装置的重要组成部分。压电材料分为晶体和压电陶瓷两类。属于晶体的如石英,妮酸锂等,属于压电陶瓷的有锆钛酸铅,钦酸钡等。其具有下列的特性:把这种材料置于电场之中,它就产生一定的应变;相反,对这种材料施以外力,则由于产生了应变就会在其内部产生一定方向的电场。所以,只要对这种材料加以交变电场,它就会产生交变的应变,从而产生超声振动。因此,用这种材料可以制成超声传感器。
传感器的主要组成部分是压电晶片,当压电晶片发射电脉冲激励后产生振动,即可发射声脉冲,是逆压电效应。当超声波作用于晶片时,晶片受迫振动引起的形变可转换成相应的电信号,是正压电效应。前者用于超声波的发射,后者即为超声波的接收。超声波传感器一般采用双压电陶瓷晶片制成。这种超声传感器需要的压电材料较少,价格低廉,且非常适用于气体和液体介质中。在压电陶瓷上加有大小和方向不断变化的交流电压时,根据压电效应,就会使压电陶瓷晶片产生机械变形,这种机械变形的大小和方向
7
中北大学毕业论文
在一定范围内是与外加电压的大小和方向成正比的。也就是说,在压电陶瓷晶片上加有频率为儿交流电压,它就会产生同频率的机械振动,这种机械振动推动空气等媒介,便会发出超声波。如果在压电陶瓷晶片上有超声机械波作用,这将会使其产生机械变形,这种机械变形是与超声机械波一致的,机械变形使压电陶瓷晶片产生频率与超声机械波相同的电信号。
A 压电晶片 B
图2-3双压电晶片示意图
双压电晶片如图2-3所示,当在AB间施加交流电压时,若A片的电场方向与极化方向相同,则下面的方向相反,因此,上下一伸一缩,形成超声波振动。
图2-4双压电晶片的等效电路图
双压电晶片的等效电路如图2-4所示,CO为静电电容,R为陶瓷材料介电损耗,并联电阻Cm和Lm为机械共振回路的电容和电感,Rm为损耗串联电阻。压电陶瓷晶片有一个固定的谐振频率,即中心频率?o。发射超声波时,加在其上面的交变电压的频率要与它的固有谐振频率一致。这样,超声传感器才有较高的灵敏度。当所用压电材料不变时,改变压电陶瓷晶片的几何尺寸,就可非常方便的改变其固有谐振频率,利用这一特性可制成各种频率的超声传感器。
超声波传感器采用双晶振子,即把双压电陶瓷片以相反极化方向粘在一起,在长度方向上,一片伸长另一片就缩短。在双晶振子的两面涂敷薄膜电极,其上面用引线通过金属板(振动板)接到一个电极端,下面用引线直接接到另一个电极端。双晶振子为正方形,正方形的左右两边由圆弧形凸起部分支撑着。这两处的支点就成为振子振动的节点。金属板的中心有圆锥形振子,发送超声波时,圆锥形振子有较强的方向性,因而能高效率地发送超声波;接收超声波时,超声波的振动集中于振子的中心,所以能产生高效率的高频电压。
8
中北大学毕业论文
2.2.2超声波传感器选择
超声波传感器有多种结构形式,可分成直探头(接收纵波)、斜探头(接收横波)、表面波探头(接收表面波)、收发一体式探头、收发分体式双探头等。超声波传感器分通用型、宽频带型、耐高温型、密封放水型等多种产品。一般电子市场上出售的超声波传感器常见的有收发一体式和收发分体式两种。其中收发一体式就是发送器和接受器为一体的传感器,即可发送超声波,又可接受超声波;收发分体式是发送器用作发送超声波,接受器用作接受超声波。
在超声波测量系统中,频率取得太低,外界的杂音干扰较多;频率取得太高,在传播的过程中衰减较大,检测距离越短,分辨力也变高。本文中选用的探头是4OKHz的收发分体式超声传感器,由一支发射传感器UCM-T40KI和一支接收传感器UCM-R4OKI组成,其特性参数如表2-5所示。
表2-5传感器特性参数表 型号 结构 使用方式 中心频率 频带宽 灵敏度 声压 指向角 容量 UCM-T40K1 开放式 发射 40?1KHZ 2?0.5KHZ 110dBVubar UCM-R40KQ 开放式 接收 38?1KHZ 2?0.5KHZ ?65dBVubar 115dBmin(0dB?0.02mPa) ?70dBmin(0dB?1Vubar) 75o 2500?25%pF 80o 2500?25%pF 2.2.3超声波测距的原理
超声波测距方法主要有三种:1)相位检测法:精度高,但检测范围有限;2)声波幅值检测法:易受反射波的影响;3)渡越时间法:工作方式简单,直观,在硬件控制和软件设计上都容易实现,其原理为:检测从发射传感器发射的超声波经气体介质传播到接收传感器的时间t,这个时间就是渡越时间,然后求出距离l。设l为测量距离,t为往返时间差,超声波的传播速度为c,则有l=ct/2。综合以上分析,本设计将采用渡越时间法。
9
中北大学毕业论文
图 2-6 测距原理
由于超声波也是一种声波,其声速c与空气温度有关,一般来说,温度每升高1摄氏度,声速增加0.6米/秒。表2-7列出了几种温度下的声速:
表2-7 声速与温度的关系表
温度(摄氏度) 声速(米/秒)
-30 -20 -10 0 313
319
325
10 20 30 100
323 338 344 349 386
在使用时,如果温度变化不大,则可认为声速c是基本不变的,计算时取c为340m/s。如果测距精度要求很高,则可通过改变硬件电路增加温度补偿电路的方法或者在硬件电路基本不变的情况下通过软件改进算法的方法来加以校正。
在本系统中利用AT89S52中的定时器测量超声波传播时间,利用DS18B20测量环境温度,从而提高测距精度。空气中声速与温度的关系可表示为:
c?331.45T?273.16?331.4?0.6T(m/s)273.16 (2-3)
声速确定后,只要测得超声波往返的时间,即可求得距离:L=1/2(331.4+0.6T)t。 (系统中应用该式进行温度补偿)
如果为了进一步提高测量精度,本设计中将根据需要利用软件方式增加角度补偿的
222设计:s?l?h。 (系统中应用该式进行角度补偿)
2.2.4发射脉冲宽度
发射脉冲宽度决定了测距仪的测量盲区,也影响测量精度,同时与信号的发射能量有关。减小发射脉冲宽度,可以提高测量精度,减小测量盲区,但同时也减小了发射能量,对接收回波不利。但是根据实际的经验,过宽的脉冲宽度会增加测量盲区,对接收回波及比较电路都造成一定困难。在具体设计中,比较了 25μs(l个40KHz方波脉冲), 100μs(4个40KHz方波脉冲),200μs(8个40KHz方波脉冲), 800μs(32个40KHz方波脉冲)的发射脉冲宽度,作为发射信号后的接收信号。最终采用短距离(2m内)发射 200μs(8个40KHz方波脉冲)发射脉冲宽度;长距离(2m外)发射 800μs(32个40KHz脉冲方波)的发射脉冲宽度,同时单片机编程避开盲区。此时,从接收回波信号幅度和测量盲区两个方
10