内容发布更新时间 : 2025/4/10 4:32:05星期一 下面是文章的全部内容请认真阅读。
12?(3)2?2,与x和正向夹角都是
arctan(3/1)?600。
A点处流函数值为?3?1?0??3,通过A点的流线方程为?3x?y??3。同样可以求解出通过B点的流线方程也是?3x?y??3。
6-9 已知流函数ψ=V∞(ycosα-xsinα),计算其速度,加速度,角变形率(?1?vy?xy=?yx=2(?x+vx?y)),并求速度势函数φ. 解: 因 Vx=
???x =???y= V∞cosα
Vy=
???y=-???x= V∞sisα
dφ=
????xdx+??ydy=Vxdx+Vydy
φ
=
?d
φ
=
????xdx+???ydy=?Vxdx+Vydy= V∞?cosαdx+
sisαdy
= V∞( cosαx+ sisαy) ax=
dVx?dt?Vx?t?Vx?Vx?x?Vy?Vx?y?0 adVy?y=
dt?Vy?t?Vx?Vy?x?Vy?Vy?y?0; ?1?vy?vxxy=?yx=
2(?x+?y)=0 6-10.证明不可压缩无旋流动的势函数是调和函数。
解: 不可压缩三维流动的连续性方程为
?vx??x?vy?y??vz?z?0 将关系??????x?vx, ?y?vy, ??z?vz代入上式得到 ??x(???x)???y(???y)???z(???z)?0 或 ?2??2??2??x2??y2??z2?0
可见不可压缩有势流动的势函数是一调和函数。
6-11 什么样的平面流动有流函数?
答: 不可压缩平面流动在满足连续性方程
?vx?x??vy?y?0 或
?vx?(?x?-vy)?y 的情况下平面流动有流函数.
6-12 什么样的空间流动有势函数?
答: 在一空间流动中,如果每点处的旋转角速度矢量?=?xi+?yj+?zk都是零矢量,即?x??y??z?0,或关系
?vz?vy?vx?vz?y??z,?z??x,?vy?x??vx?y成立, 这样的空间流动有势函数. 6-13 已知流函数ψ=-q2??,计算流场速度. 解: Vr=
??r??=-q2?r
V??θ=-?r=0 6-14平面不可压缩流体速度势函数 φ=ax(x2
-3y2
),a<0,试确定流速及流函数,并求通过连接A(0,0)及B(1,1)两点的连线的直线段的流体流量. 解: 因 Vx=
???x????y=a(3x2-3y2) Vy=
???y=-???x=-6axy
dψ
=
???xdx+???ydy=-Vydx+Vxdy=6axydx+a(3x2-3y2)
dy ψ
=
?dψ
=
?????xdx+??ydy=?-Vydx+Vxdy
=?6axydx+
a(3x2-3y2)dy
=3ax2y-ay3
在A(0,0)点 ψA=0; B(1,1)点ψB=2a,q=ψA-ψB=-2a.
6-15 平面不可压缩流体流函数ψ=ln(x2
+y2
), 试确定该流动的势函数φ.
解:因 Vx=
???x =??2y?y=x2?y2
Vy=
???y=-???x=-2xx2?y2