内容发布更新时间 : 2024/11/8 15:33:11星期一 下面是文章的全部内容请认真阅读。
最新苏教版五年级数学下册知识点精华及各单元易错题
第一单元简易方程
1、表示相等关系的式子叫做等式。 2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。
4、等式的性质1:等式两边同时加上或减去同一个数,所得结果仍然是等式。等式的性质:2:等式两边同时乘或除以同一个(不为0的数),所得结果仍然是等式。 5、使方程左右两边相等的未知数的值叫做方程的解。 6、求方程中未知数的过程,叫做解方程。
7、检验格式:60-4X=20 解4X=60-20 4 X=40 X=10 ?检验:把X=10代入原方程, 左边=60-4×10=20, 右边=20, 左边=右边,所以,X=10是原方程的解. ?检验:方程左边=60-4×10=20 等于方程右边所以,X=10是原方程的解
8、解方程时常用的关系式:一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差 一个因数=积÷另一个因数 除数=被除数÷商 被除数=商×除数
9、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数 和=(首项+末项)×项数÷2 10、偶数个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
11、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出方程E、解方程F、检验G、作答。注意:解完方程,要养成检验的好习惯。 第二单元 折线统计图
1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。
2、作复式折线统计图步骤: ①写标题和统计时间; ②注明图例(实线和虚线表示); ③分别描点、连线、标数; ④实线和虚线的区分(画线用直尺)。
注意:先画表示实线的统计图,再画虚线统计图。不能同时描点画线,以免混淆。(也可以先画虚线的统计图) 第三单元 :因数和公倍数
1、几个非零自然数相乘,每个自然数都叫它们积的因数,积是这几个自然数的倍数。因数与倍数是相互依存绝不能孤立的存在。
1
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。(找因数的方法:成对的找,一般从小到大排列。)
3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。(找一个数倍数的方法:从自然数1、2、3、??分别乘这个数) 4、一个数最大的因数等于这个数最小的倍数。
5、按照一个数因数个数的多少可以把非0自然数分成三类①只有自己本身一个因数的1 ②只有1和它本身两个因数的数叫作质数(素数) 100以内的素数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97二十五个。最小的质数是2。在所有的质数中,2是唯一的一个偶数。 ③除了1和它本身两个因数还有别的因数的数叫作合数。(合数至少有 3个因数)最小的合数是4。按照是否是2的倍数可以把自然数分成两类偶数和奇数。最小的偶数是0.
6、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , ),举例:(24,18)=6。两个数的公因数也是有限的。公因数只有1的两个数叫作互质数
7、两个数公有的倍数,叫做这两个数的公倍数,其中最小的一个,叫做这两个数的最小公倍数,用符号[ ,]表示。举例:[15,24]=120.。两个数的公倍数也是无限的。 8、两个素数的积一定是合数。举例:3×5=15,15是合数。
9、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。
10、求最大公因数和最小公倍数的方法:(列举法、图示法、短除法、 辗转相除法 ......) ①倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5 ②互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。(相邻的两个自然数互质、1和任何自然数互质、两个不同的质数互质、一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质。相邻的两个奇数是互质数。例如 49与 51。两个相差4的奇数是互质数。例如 49与 53。大数是质数的两个数是互质数。例如97与91。小数是质数,大数不是小数的倍数的两个数是互质数。1和任何自然数(0除外)都是互质数。) 举例:[3,7]=21,(3,7)=1 ③一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。
11、质因数:如果一个数的因数是质数,这个因数就是它的质因数。
12、分解质因数:把一个合数用质因数相乘的形式表示出来,叫作分解质因数。
13、是2的倍数的数叫作偶数,不是2的倍数的数叫作奇数。相邻的偶数(奇数)相差2。
2
14、2 的倍数的特征:个位是0、2、4、6、8。5的倍数的特征:个位是0或5。3 的倍数的特征:各位上数字的和一定是3的倍数。和与积的奇偶性:偶数+偶数=偶数 奇数+奇数(偶数个奇数)=偶数 偶数+奇数=奇数 偶数×偶数=偶数
偶数×奇数=偶数(因数中只要有一个偶数) 奇数×奇数=奇数 四、分数的意义和性质
1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。 2、分母越大,分数单位越小,最大的分数单位是1/2。
3、举例说明一个分数的意义:3/7表示把单位“1”平均分成7份,表示这样的3份.还表示把3平均分成7份,表示这样的1份。3/7吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。
4、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。 被除数÷除数= 被除数/除数 如果用a表示被除数,b表示除数,可以写成a÷b=a/b(b≠0) 5、4米的1/5和1米的4/5同样长。 6、求一个数是(占或者相当于)另一个数的几分之几,用除法列算式计算。方法:是(占或相当于)前面的数除以后面的数写成分数。男生人数是女生人数的3/4,则女生人数是男生人数的4/3。(注:男生人数是女生人数的3/4的意义是把男生人数看作3份则女生有这样的4份。 7、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。8、真分数小于1。假分数大于或等于1。真分数总是小于假分数。 9、所有分母相同且分母为大于2的自然数的最简真分数和一定为整数。 能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)
分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是
假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,写作 读作一又三分之一。带分数都大于真分数,同时也都大于1。 11、把分数化成小数的方法:用分数的分子除以分母。
113 ,
12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,??
3