内容发布更新时间 : 2024/11/19 13:35:54星期一 下面是文章的全部内容请认真阅读。
新北师大版八年级数学上册第一章 勾股定理教案
教学目标:
1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究
的习惯,进一步体会数学与现实生活的紧密联系。
2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的
意识及能力。 重点难点:
重点:了解勾股定理的由来,并能用它来解决一些简单的问题。 难点:勾股定理的发现 教学过程
一、 创设问题的情境,激发学生的学习热情,导入课题
出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影2 (书中的P2 图1—2)并回答:
1、 观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。 正方形B中有_______个小方格,即A的面积为______个单位。 正方形C中有_______个小方格,即A的面积为______个单位。
2、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问: 3、 图1—2中,A,B,C 之间的面积之间有什么关系?
学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢? 二、 做一做
出示投影3(书中P3图1—4)提问: 1、图1—3中,A,B,C 之间有什么关系? 2、图1—4中,A,B,C 之间有什么关系?
3、 从图1—1,1—2,1—3,1|—4中你发现什么? 学生讨论、交流形成共识后,教师总结:
以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。 三、 议一议
1、 图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗? 2、 你能发现直角三角形三边长度之间的关系吗? 在同学的交流基础上,老师板书:
直角三角形边的两直角边的平方和等于斜边的平方。这就是著名的“勾股定理” 也就是说:如果直角三角形的两直角边为a,b,斜边为c
那么a?b?c
我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
3、 分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生
测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)
四、 想一想
这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他
222 1
指什么呢?
五、 巩固练习
1、 错例辨析:
△ABC的两边为3和4,求第三边 解:由于三角形的两边为3、4
所以它的第三边的c应满足c?3?4=25
即:c=5 辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题 △ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。
(2)若告诉△ABC是直角三角形,第三边C也不一定是满足a?b?c,题目中并为交待C 是斜边
综上所述这个题目条件不足,第三边无法求得。 2、 练习P7 §1.1 1 六、 作业
课本P7 §1.1 2、3、4
222222§1.1 探索勾股定理(二)
教学目标:
1. 经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和
合作交流的习惯。
2. 掌握勾股定理和他的简单应用 重点难点:
重点: 能熟练运用拼图的方法证明勾股定理 难点:用面积证勾股定理 教学过程
七、创设问题的情境,激发学生的学习热情,导入课题 我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么? (同学们回答有这几种可能:(1)(a?b) (2)
221ab?4?c2 ) 2在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。
a2?b2=
1ab?4?c2 请同学们对上面的式子进行化简,得到: 2a2?2ab?b2?2ab?c2 即 a2?b2=c2
这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。 八、讲例
1. 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20
2
秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?
分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的
?c?90?,AC?4000米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在
20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。
解:由勾股定理得BC?AB?AC?5?4?9(千米)
即BC=3千米 飞机20秒飞行3千米,那么它1小时飞行的距离为:
222223600 ?3?540(千米/小时)20答:飞机每个小时飞行540千米。
九、 议一议
展示投影2(书中的图1—9)
观察上图,应用数格子的方法判断图中的三角形的三边长是否满足a?b?c 同学在议论交流形成共识之后,老师总结。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。 十、作业
1、 1、课文 P11§1.2 1 、2 2、 选用作业。
222
§1.2 一定是直角三角形吗
教学目标: 知识与技能
1.掌握直角三角形的判别条件,并能进行简单应用; 2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.
3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论. 情感态度与价值观
敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.
教学重点
运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
教学难点
会辨析哪些问题应用哪个结论. 课前准备
标有单位长度的细绳、三角板、量角器、题篇 教学过程:
3